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PREFACE

My main reason for writing this book was to make available to English-
speaking students the results of Chapter III, the so-called multiplicity
theory. The only exposition of that theory that has been easily ava@lable
in America is the one given by Stone, who discussed sel- ad]mnt ‘opera-
tors on & separable Hilbert space. The theory as I present it derls with
arbitrary spectral measures and includes, consequently, thg- ‘multiplicity
theory of (bounded or unbounded) normal operators ona, ot necessarily
separable Hilbert space, and includes, as another usefi) Spema.l case, the
multiplicity theory of unitary representations of locally compact abelian
groups. In view of the fact that a weakly closedpseli-adjoint, commuta-
tive operator algebra has a lot of projections\ \in it, the structure theory
for Boolesn algebras of projections, as devéloped in Chapter 111, applies
to sueh operator algebras also. R

I have been fortunate in being able £0 make use of several simplifica-
tions of Hilbert space theory, sdme of which were published only in
the last five years. As examplés of such recent contributions I mention
Eberlein’s proof of the spect}al theorem and the detailed treatment of
the multiplicity theory bQ\Plessner and Rohlin. The work of the latter
authors, in turn, is obvipusly very strongly influenced by the pioneering
research of Wecken e approach to multiplicity theory whieh I present
has some claim agovelty, but in its fundamental ideas it is essentially
a permutation™f what I learned from Wecken and from Nakano.

The ﬁrst%o chapters of the book are not new at all and they are
there oniy \to prepare the way for Chapter IIL. The last clause is not,
howea(er, to be taken literally—one can draw a shorter and straighter
line\bétween the axioms of Hilbert space and the theory of multiplicity
than the one I have drawn. Such material as does not directly contribute
to Chapter IT1 has the purpose of nailing down the edges, 20 to speak—
of supporting the strictly necessary material by illuminating and illus-
trating it. Despite the presence of “irrelevant” theorems, large parts
of the theory of Hilbert space are still conspicuous by their absence:
I do not define unhounded operators, for instance, and I do not even
mention any of the several valuable applications of the theory to in-
teresting special cases.
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There are three technical details that the reader should know. (1)
Since some of the notation which is used throughout the book is es-
tablished in §0, both the expert and the beginner are advised to plance
at that initial section. (2) There are & few statements, printed formally
a5 theorems, which are not supported by even one word of proof. They
exist for purposes of reference and they are not proved, because I con-
sidered them trivial. {3} The reference system is simple and standlard.
An expression such as u.v, where u and v are ordinal numbers, re@rs
to Theorem v in §u. \

In conclusion T want to express my warmest thanks to Arled_Brown,
M. Gerstenhaber, M. M. Gutterman, and E. A. Michael fortheir aid in
preparing this book. They read the manuscript, madeyfgny valuable
suggestions, and would not back down when I objected/Po'tHeir eriticism.
I am also grateful to my colleagues Irving Kaplansi}f’and 1. K. Segal
for -several stimulating conversations about mu}tiiﬂicity theory.

D
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§0. Prerequisites and Notalion

The principal prerequisite for an intelligent reading of this little book
is a thorough knowledge of what is usually called the theory of functions
of a real variable. We use that phrase, as it is always used, to denole a
hodge-podge of the theories of sets, cardinal numbers, topological {snd
partienlarly metric) spaces, measure, and integration. Refereneng-for
results used but not developed in the text (as well as accasional .mfe\ei"ences
to the sources of our material and to detailed presentations.of“subjects
we shall barely have time to mention) are to be found atythelend of the
book. S

We devote the remainder of this section to a detaited description of
our terminological and notational conventions and'to the statement of
a representation theorem for linear functiona}v{hich we necd in a form
slightly different from the one in which ifaswasually given.

The word fam:ly is used throughout, '(a‘s“a. generalization of sequence)
to denote an indexed set, so that, f0r instance, a family {a;} of real
numbers is a real-valued function :Qh’é certain index set {j}. Any adjec-
tive {such as finite or countable), When applied to a family, is to be inter-
preted so0 as {o modify the ,i@ex set which serves as the domain of that.
family. If {a;} is & farxiw'df objects, each object «; is called a ferm of
the family. \
~ The symbol &5 ig'thé Kronecker delta: its value is 1 or 0 according as
i=k f)l’j # k.(The symbol N, denotes the cardinal number of the set
of all 1nteg§1"§?The letter x (almost always used with a subscript} is
reserveq ;Q("chamcteristic functions, so that, for instance, if 7 is a
Subsei?jofa space X and if ¢ is a point of X, then xu{f) = 1 or 0 according
as ¥does or does not belong to M.

\}Ehe word pﬂEmeial without an adjective means a polynomial with
;?:1?5;_?:5 iﬁﬁ?ﬁgﬁ;ﬂthgﬂr}nodiﬂcatim‘ in the phrase real pc:lynomial
3 complex number a i “;l ;331 1l;:oeﬂjl;':len’os. The eumplex conjugate of
greatesi lower bound of aenz’l\l;f fy ¥\ mhe least uppar bound and the
such a8 sup (atee 3| o Sg o o f'eal numbers are denoted by symbols

The empty set is den(?tedmb ot ¢ M) respeciively.

“the set where. . ", so that fy 0 e symbol {5 ] 18 wsed 100
NP , for instance, {ata > 0} is the set of all

3



§0. PRERRQUISITES AND NOTATION 9

positive real numbers. The symbols U, N, —, and < are used for union,
interscetion, relative complement, and not necessarily proper set in-
clusion respectively. The symbol « is used to indicate the belonging of
an element to a set; the negation of a belonging assertion is indicated
by a similar use of ¢. The Cartesian product of two sets M and N is
denoted by M X N.

The convergence of a sequence {z,} of points in a metric space to a
point z is denoted by #, — 2. The closure of a subset M of a metric (or,
more generally, of a topological) space is denoted by M. ~

By a measure (without adjectives) we shall always mean a non-negafive
and countably additive set function g defined on a Boolean chalgébla
8 of subsets of a set X. Almost all the measures we shall enconpter will
be finite measures, Le. such that u(X) < . A complex imedsure is a
complex-valued, countably additive set function. Sincé’the real and
 imaginary parts of a complex measure are countably: a.dﬁitive, and since,
therefore, each of these parts is the difference of twO\neasures, it makes
sense to infegrate with respeet to a complex meaﬁ:lre the process is to
be carried out by expressing the given complex\measure a3 a linear com-
bination of measurcs, as just indicated, and‘then forming the correspond-
mg lincar combination of ordinary m‘geg;'al.s.

If (X, S, p) is & measure space, i\ is a measurable subset of X
(ie. if M < X and M ¢8), andhif a (complex-valued) function f is
integrable with respect to u o, then the value of the integral is de-
noted by [a f(t) du(t) or IM Adu; if M = X, the subseript is omitted.

If ¢ is a measure and i aus a positive nymber, the set of all ¢omplex-
valued measurable funétions f such that | f[® is integrable with respect
to u is denoted by ®atk). (The only values of & which will interest us
are 1 and 2.) If iwo functions in ¥,(y) difier only on a set of measure
zero, they aresregarded as identical.

A useful prepositional distinetion is made by saying that a measure
1 15 defined on S and ¢n X. This usage may be extended slightly. If X
is a sef, }f S is a Boolean a-algebra of subsets of X, and if M is 5 set in
8, we shall speak of a measure i defined #n M, meaning that p is defined
on S and u(X — M) =

The representation theorem that we mentioned earlier may be stated
as follows. Buppose that L is a complex-valued function whose domain
is the set of all real polynomials (in one variable} and which is such that
L{ap 4+ Bg) = aL(p) + BL(g) whenever & and § are real numbers and
p and ¢ are real polynomials—suppose, in other words, that L is a linear
functional of polynomials. Let X be the real line and let A be a compact
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subset of X; for any complex-valued, bounded function f on A write
N.{f) = sup {|f(0)]|:} e A}. If the Linear functionul L. ix huunded in
the sense that there exists a positive real number @ suel that | fLip)i =
alN 4 (p) for all real polynomials p, then there exists a unigue comples
measure x defined on the class of all Borel subsets of X and /1 A ol sueh
that L{p) = [ 4 p du for all real polynomials p. The complex measure 4
has, moreover, the property that | x(M) | S « for every Bovel subse 3/
of X.

If that were all, it would be bad enough—but we need even more,
The more that we need is the extension of the theorem 1o fwo disgeh-
sions. The statement of the more general result is very casy Lo MCxribe:
it is obtained from the statement above by changing the p: u{\hllu tieal
phrase “in one variable” to “in two variables,” and 1r1t.upn ting the
symbol X as the Cartesian product of two real lines (mé (?1111\ alendly,

as the complex plane). \\
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CHAPTER I
THE GEOMETRY OF HILBERT SPACE

$1. Linear Funectionals \

Throughout this book we shall work with vector spaces over ihefield
of complex numbers, or, as they may be more briefly described, “$omplex
vector spaces. The @slmplest and yet by far the most 1mportant example
of a complex vector space is the set € of all complex nufabérs, with the
vector operations of addition and scalar muItlphcatroh\mterpreted as
the ordinary arithmetic operations of addition ahd multiplication of
complex numbers. o\

We recall an elementary definition. A Jméw “transformation from a
complex vector space $ to a complex veetor'space ® is a mapping A
from  into & such that A{ax + By) =\adz + B4y identically for all
complex numbers a and 8 and all vectm z and ¥ in $. Just as the special
vector space @ plays a dlSt[nbulﬁth role among all ecomplex vector
spaces, similarly linear uansformatlons whose range space & coincides
with € (such linear transfor m,a,‘&ons are called linear functionals) play a dis-
tinguished role among l\hnear transformations. Explicitly: a linear
functional on a complsx vector space $ is a complex-valued funetion
£ on $ such that (md now we proceed, for the sake of variety, to state
the definition of ]{warlty in terms slightly different from the ones used
above)

(i) £is ad&mve (ie. ez + y) = E(x) + E(y) for every pair of vectors
¢ and y a9}, and

(i} & 5 homogeneous (le. £(ax) = of(r) for every complex number
o« ami for every vector z in 9).

Tt is sometimes convenient to consider, along with linear funetionals,
the closely related confugate linear functionals whose definition differs
from the one just given in that the equation t{az) = af(x) is replaced
by #(az) = a*#(z). There is a simple and obvious relation between the
two concepts: a necessary and sufficient condition that a complex-valued
function £ on a complex vector space be a linear functional is that £*
be a conjugate linear functional.

11
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§2. Bilinear Functionals

For the theory that we shall develop, the coneept of o babinear Bune-
Lonal s even more important thun that of n limear funetional. A hilinear
frunetional on o complex veelor space $ oo votaples walied Dunetion
¢ on the Cartesian product of $ with it=ell suelh thau Wi o) =
elo, i), then, for every £ amel y in 8, £y i Hoear frnelionad ol g is a
vonjugale lineat functiooal.

This delinition of a bilinear funetional s different trom s ene eom-
monly used in the theory of veetor spaces over an arhibrey fiehlthe
ustad definition requires that, forevery s L TR T TR Bt n, snglady uhial!
b Lnenr functionals, An example of o bilinear fanetion:sad ji@.?“fumm,l”
sense muy be manufactured by starting with two aphi(Fary linear
functionuls £ and g and writing (e, #) - L), o thisly ridated
example of a bilinear functional in the sense \\"L;‘if-\ﬁ we dlefined that
concept s obtained by writing o(z, y) = £() ¥ (D Wi obhjerts that we
defined are sometimes called Hermition bilmisd funetionads. Further
examples of either usual or Hermitian biligchat funetionals may he con-
siructed by forming finite linear combingtions of examples of the product
type described above. After this hrig?.};uﬁn.lnvm on the peenliarity of our
terminology (adopted for reasons b’ simplicity), we shall consistently
stick to the definition that \\'q}a:'.f(Sl'mally given n the preceding paras
graph,

Tt is eusy to verify th;:gt‘?fgo s & bilincar functional and if the function
¢ is defined by ¥(z, W= ¢*(y, 7), then ¥ i« o bilinear funetional. A bi-
linear functional @ is symmetric if ¢ = ¥, OT, explicitly, i ols )
o*(y, z) for eveglz)}pair of vectors z and y. A bilinear fuuctional @ is Posi-
tive if o(z, 2)/2"0 for every vector z; we shall say that ¢ is strictly positive
if (e, x)§? 0 whenever z # 0.

2 8

*
.

2\ D §3. Quadratic Forms
N\ 3The quadratic form & induced by a bilinear functional ¢ on 2 complex
vector space is the function defined for each vector z by &(x) = oz, 7).
Using this language and notation, we may paraphrase one of the defini-
tions in the last paragraph of the preceding section as follows: ¢ is posi-
tive if and only if & is positive in the ordinary sense of taking only
positive values.
A routine computation yields the following useful result,

TuporEM 1. If & 1s the quadratic form induced by o bilinear f unctionol
¢ on a complex veclor space D, then
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ol y) = 60 + 1) — oG — 1)
+ip(3 + @) — bz — @)
for every patr of veclors and y in 9.
The process of celeulating the values of the bilinear functional ¢ from
the values of the quadratic form &, in accordance with the identity in

Theoretn 1, is known as polarization. As an immediate corollary of this
process we obtain {and we state in Theorem 2) the fact that a bilinear

functional is uniquely determined by its quadratic form. \
TreoreM 2. If two bilinear funciionals ¢ and ¢ are such that, &= ¥,
then ¢ = Y- A\
Theorem 2 in turn may be applied to yield a simple c}\afé,gﬂerization
of symmetric bilinear functionals. \:
TgeorEM 3. A Diltnear Functional ¢ is symmet:f‘?}:? if and only of @
is real, Y,

Proof. ¢ is gymmetric, then Plx) = o,y = Mz, z) = ¢*@)
for sl z. If, conversely, % is real, then the biinear functional ¥, defined
by ¥(z, ¥) = &y, ), and the bilineair»fgﬁétiona] @ aresuch that & = ¥;
it follows from Theorem 2 that @3¢ =Y.

~ ¢

§4. IngQi: Product and Norm

Y

An inner product in\g'\iﬁoinplex vector space © s a strictly positive,
symmetrie, bilinear fanetional on . An inmer product space 18 & complex
veetor space 9, apQ an inner product in 9. The vector space € of all
complex numpgers becomes an inner product space if the inner product
of o and ié}l‘e’ﬁned to be off*; in what follows we shall always interpret
the symbai ©, not merely asa vector space, bub asan inner product space
with.phi$ particular nner product.

'"I{; ik convenient and, a8 it turns out, not confusing to use the same
n\tation for inner product in all inner product spaces; the value of the
inner product at an ordered pair of vectors o and y will be denoted by
(z, ). The quadratie form induced by the inner product also has a uni-
versal symbol: its value at a vector z will be denoted by |l ||, The
positive square 100t Izt of 1} 1I? is called the norm of the vector .
Note that the norm of & veetor a in the inner produet space § coincides
with the absolute value of the complex number o

Throughout this book, unless i some special context Wwe explictily -
dicate otherwise, the symbol § will denote a fixed inner product space; all
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apparently homeless vectors will be presumecd to belong to & and the
definitions of all concepts and the proofs of all theorems will pertain

to §.

TueorEM 1. A necessary and sufficient condilion that v = 0 13
that {(x, y) = 0 for all y.

Proof. Ii (z,y) = 0 forally, then, in particular, (z,z) = 0 and conse-
quently, since the inner product is strictly pesitive, z = 0. 1f, con-
versely,z = 0, then (z, ) = (0z, 1) = 0@z, ») = 0. (\oit {hut Khe
proof of the converse is nothing more than the proof of the fact tk ial, if
t is any linear functional, then £(0) = 0. It follows, of coupse; it if
¢ is any bilinear functional, then (0, §) = ¢(z, 0) = 0 for «LH and .}

THEOREM 2. (The parallelogram law.} For any uectors\x r:mraf i,

2 2 2 ’\ 2
N+l + e -yl =20=i KW il
Proof. Compute. o\

The reader should realize the relatioy betw cen Theorem 2 and
the assertion that the sum of the squares f the two diagonals of a
parallelogram is equal to the sum of theisquares of its four sides.

The most important relation botween vectors of an inner product
space is orthogonality; we shall say. that z is orthogonal to y, in symbols
z Ly if {(z,4) = 0. In termgof this concept Theorem 1 says that the
only vector orthogonal to ev‘ery veetor ig 0. For orthogonal vectors ihe
statement of the para]:keiogram law may be considerably sharpened.

THEOREM 3. (The PBythagorean theorem.) If = 1 v, then
S+ oyl =i+ Nyt

The reade\r should realize the relation between Theorem 3 and the
assertiony ‘tl}at the square of the hypotenuse of a right triangle is the
sum ofY the squarcs of its two perpendicular sides.

AN iamlly {x;} of vectors is an orthogonal family if ; | x: whenever
j k. We shall have no qualms about using the obvious inductive
generalization of the Pythagorean theorem, i.c. the assertion that if
{;} is a finite orthogonal family, then || Z;z; 1" = Z; ] &5 |%

§9. The Inequalities of Bessel and Schwarz

A vector z is normalized, or is a unit vector, if || # || = 1, the process
of replacing a mon-zero vector z by the unit vector z/}j z || is called
normalization. A family {x;] of vectors is an erthonormal family if it
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is an orthogonal family and each vector z; is normalized, or, more ex-
plicitly, if (x;, ©) = 85 for all j and k.

Taponem 1. (Bessel’s inequality.) If {x;} s a finile orthanormal family
of vectors, then

i@z} P s el

for every veclor x.
Proof.

02z — 2z, x0n; B = Nz l* — 2z, 2z, 2) — 245, &) (T3
4 3,3, 2, o) (g, ) = {2 I — =5 l;(m',\:ﬁ‘ﬁ P

(The expressions (x, %;} will occur frequently in our woxk:}, they are
called the Fourier coefficients of the vector x with respect/$o the ortho-
normal family {z;}.) ")

It is sometimes useful to realize that the stric)positiveness of the
inner product is not needed to prove the Bés%el inequality. In the
presence of strict positiveness, however, 4hé statement of Bessel’s in-
equality can be improved by adding to, ft.the assertion that eguality
holds if and only if « js & linear combipation of the z;’s. The proof of
thig addition is an almost immec‘liaié" consequence of the observation
that in the proof of Bessel’s ingqmﬂity there is only one place at which
an inequality sign oceurs.

TuroreM 2, (Schwa ’{{éﬁequ&lﬁy.) @, ] < il=l-lell

Proof. If y = 0, thegesult is obvious. If y 0, write o = ¥/l ¥ |l ;
since 0 || = 1, i@ since the family consisting of the one term g is
an urthononorm@,'family, it follows from Bessel's inequality that
| o0} | = l%\ﬂ

Schwa}‘z‘é\inequalit-y, just as Bessel’s inequality, would be true even
if the izméi‘ product were not strictly positive (but merely positive). Our
prgofyof Schwarz’s inequality is not delicate enough to yield this im-
provément: we made use of strict positiveness through the possibility
of normalizing any non-zcro vector. In the presence of strict positive-
ness, however, the statement of Schwarz’s inequality can be improved
by adding to it the asserfion that equality holds if and only if zand ¢
ave linearly dependent; the proof of this addition is, in one direction,
trivial and, in the other direction, a consequence of the eorresponding
facts about Bessel’s inequality.

The Schwarz inequality has an interesting generalization. If {z;} isa
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non-empty, finite family of vectors, and if v = (%;, ), then the
determinant of the matrix [y;] is non-negative; it vanishes if and only
if the z;'s are linearly dependent.

§6. Hilbert Space
TuroreMm 1. The norm in an inner product space s
strictly positive (t.e. || x || > 0 whenever x # (1),
positively homogeneous (i.e. || ax || = | e ||| = ||), and
subadditive (Ge. ||z + w|| S Nxll + o). O
NS “
Proof. 'The strict positiveness of the norm is merely a restatement of
the strict positiveness of the inner product. The positivghomogeneity of
the norm is a consequence of the identity \\
S

| @

N\
The subadditivity of the norm follows, 1\1\g Schwarz’s inequality,
from the relations

laz |* = (ax, a2) = aa®(z, z) =

Q"

qetyll’=G@+yr+ | I»H Tl ol + [ ol + vl
<l + 2l gl vl + iy i * = Qi+ 1

Turorem 2. If the distange from a vector x to a vector y isdefined to be
itz — y 1], then, with 'res-pecNo this disfance function, £ is ¢ melric space.

Proof. , The fact thd ‘txhe distance function is siréictly positive (i.e. that
e — ¥ l| =z (, with/equality holding if and only if z = y) follows from
the strict positi\ft;r{ésé{ of the norm. The fact that the distance funection
is symmetric (kehat ||z — vl = ||y — = | for every pair of vectors
r and y) &Tb\’ss from the positive homogeneity of the norm and the
identity ¢ y) = (—1)(y — z). The validity of the triangle inequality
(i.e. théwelation | s ~ y || < [z — 2 || + || 2 — y || for every triple of
Vcetpt?s x, ¥, and 2} follows from the subadditivity of the norm and the
ideptity 2 — y = (& — 2) + (2 — ).

In view of Theorem 2 we shall feel free to use, for inner product
spaces, all such topological concepts as convergence, continuity, separa-
bility, dense set, closed set, and the closure of a set, and all such metric
concepts as uniform continuity, Cauchy sequences, and completeness.
We shall, in partieular, need to make use of the continuity of the four
operations (scalar multiplication, addition, and the formation of inner
products and norms) which are intrinsic to inner product spaces.
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REM 3. If @u(z) = ax, ® {(z,¥) = 2 + y, &) = (2, y), and
|| 2 || whenever o s a complex number and x and y are vectors,
the functions ®. , 3", ®,, and & are uniformly continuous fune-
all their arguments.

The four assertions are consequences, respectively, of the
g four inequalities.

Heam — am || £ lal-fo - 2 (1.

Wty 4+ 1) — @+l S lia — |+ 1 — il
(e, 0) = @, )] o — |-yl

@ ]] = Hae ] = (|2 — 2.

{bert space is an inner product space which, as a metric spacg,“i:s
te. It is worth noting that the special inner produet spacfe”@
. and 4) is in fact a Hilbert space. We extend the cohvention
hed in §4 by requiring that, from now on, the tnner praduict space
r consideration shall in fact be a Hilbert space. NS

wimed veetor space is a vector space with a JBtrictly positive,
Jly homogeneous, and subadditive norm; a\Banach space is a
| vector space which, as a mefric space, 45" complete. A small
» of our results will be valid for Banachgpaces as well as for the
Bunach spaces (i.e. Hilbert spaces);t-hé,t we are studying; when-
is possible and convenient to dg.ge,"we shall arrange our proofs
. they make sense in any Bdnaeh space. The precise extent to
Hilbert spaces differ from>general Banach spaces has received
bit of attention; it mayhe pxpressed by saying that the norm
Ihert space is essentigllyXquadratic in character, in the sense, for
e, that the parallelogfam law is valid.

completeness of“Bilbert space is, to be sure, an essential part
tructure, but itu5 unessential n the sense that an inner product
an always ba completed to be a Hilbert space. More precisely it
that thelidear operations and the inner product may be uniquely
ed to the ordinary metrie completion of an inver product space
. the completion becomes a Hilbert space.

§7. Infinite Sums

mily {z;} of vectors will be called summable with sum in symbeols
= 3, if for every positive number ¢ there exists a finite set Jy of

T
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indices such that ||z — Z,uz; Il < ¢ whenever J is a fimte set of in-
dices containing Jy . It is clear from this definition that u finite family
of vectors is always summable and that its sum, 1n the present sense,
coincides with the elementary concept of veetor sum. As another ex-
ample we mention the fact (whose proof is a not particularly dilfieult
exercise) that a sequence {a,] of veetors in the Hilbert space € is
summable with sum o if and only if the ordinary numerical series
% _,a. is absolutely convergent to the value a. We emphusize the fact
{and we shall make use of it below) that our definition malkes seus& in
particular, in the space € and hence that such relations as 2oy « are
mea.nmgful {though not necessarily true} for not necessar Ll"& eerinlable
families {«,} of complex numbers.

It follows from the last remark that the theorem w hu h we have been
calling Bessel’s inequality makes sense for not m,(xémnly finite (nor
even necessarily countable) orthonormal familiés¥ 1t not only makes
sense—it is true. The proof requires nnthmg\\mow than the observa-
tion that, by the definition of sums, it_ig{stdficient to consider finite
families. We propose, accordingly, to ghange our custom and, in the
sequel, when we refer to Bessel’s ineguality, to have in mind the gener-
alization just now discussed. Morg} fmmm‘.ll} Bessel’s inequality is to be
interpreted as the theorem obtamod from 5.1 by deleting the word
“finite.”” One amusing cons{,quence of the Besscl inequality in this form
is the proposition that if {x».} js an orthonormal sequence, then (2, za} —
0 for every vector x, Q\‘rhat the Fourier cocfficients of = tend to 0.

TrrOREM L. Ij.zjxj- =z, then =, a; = ax for every complex number a.
NS

TuroreM 200Mf {35} and {1;) are two families of vectors, indexed by
the same ss({"_;r\}‘,’and ifZ,0;=xand Dy, =y, then 2{x; +y) = ¢+ U

THFY:;:BEI\{ 3. If Z; jE; = I, then zj(xj , y) — (T, y) and E_,(?j, Z_{) —
(yn,:c)‘for every vector .

\Tho proofs of all three theorems are quite elementary; they are, n

fact, consequences of the following three relations (valid for any finite
set J of indices) respectively:

|| e — T |l = bl e ~ Ziotill,
||(x + ) — (@ + yi)” = HiU — Zuri|| + || ¥ — EfEJyJ'H 3
Mz, y) — Sy, o)) = — om0 S U — Syl
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$8. Conditions for Summability

TuroreMm 1. A family {z;} of veciors is summable if and only if for
every positive number ¢ there exisls a fintle set Jo of indices such
that ;| Zjer¥; || < & whenever J is a finile set of indices disjoint from Jo.
1f {z;} is summable, then the sei of those indices j for which x; # 0 18
countable, .

Proof. If {x;} is summable with sum x, then for every positive
number ¢ there exists a finite set Jo such that {| # — Zyw;i| < i wheénd "
ever J OJp . It follows that if J n Jy = @, then R\ \J

Ny

U 2035 || = || Zieounn®s — Zsergi || 212 = Zjer usg 5|

+ || = ':"\z;’\;‘;_fuxj || < .
Tf, conversely, the condition is satisfied, then for every pesitive integer n
there exists & finite set J, such that || ;e ;i <{%‘;§>ﬁenever JnJ, =10

By replacing J. by Jiu ---uJa,n =1, 3%, we sec that there is
no loss of generality in assuming (and we'do thercfore assume) that the
sequence |.J.} of finite sets is increasing: (From these considerations we
can already deduce the second assmiﬁioﬁ of the theorem. If, indeed, an
index § does not belong to the countable set Jiu Jau -+, then [J 5} <

1 cee
- for every posifive mteger;iﬁ}md consequently z; = 0.) To complete

\
the proof of summabilitya\note that if n < m, then

\ ) 1
I E':‘j\i,uﬁ?:' — S till = || Zjaa—vatill < -

A& .
sinee (J ., —\ol}.)’ a J, = 0. It foliows from the compieteness of Hilbert
space thatethere exists a vector 2 such that I ez — i) — 0.1 Jis
any {inifé)set of indices containing Jn, then

3 .
N s - sl S il2 - Zanss ]+ 1 Bl
and therefore {x;} is summable with sum z.

The sceond part of Theorem 1 asserts that our concept of summation
is more of a notational convenience than a great generalization of the
more elementary concept of infinite series.

Trororem 2. An orthogonal family {x,} of vectors & summable if and
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only if the family {|| ;1| *} of positive numbers is summable; this condi-
tion may also be expressed by writing 2; || z;]|" < =. Ifz = Z;z;,
then ||z 11* = 2|l 211"

Proof. If {z;} is summable, then for every positive number ¢ there

exists a finite set J, such that {| 2025 ]| < ¢ whenever J o Ju = 0, and
consequently

Zjes ” xi” ? = H Zjer®; H : <e A\
whenever J n J, = 0. If, conversely, ;|| z; ]| * < =, then fur every
positive number ¢ there exists a finite set Jo such that 2., | {g\J,\ < ¢
{and consequently || 2,2, || < £) whenever J a Jo = 05 _swhmability

follows from Theorem 1. The second assertion of the the’ormn 1% con-
sequence of the relations

oo’

..,\\
{x, 2} = (2;2;,2) = Z;{a;, 2} = Z;(z;, Eka) g

= LE’L , Ty = 2z, %)
(The last step in this chain of equatiogsydépends on the obvious fact
that if all but one of the ferms of a f;mul} of vectors, or, in particular,

of complex numbers, are zero, theR® that family is Hllmll’ldbli and its
gum is the exceptional term.}

Note that the second partof Theorem 2 is the obvious generalization
of the Pythagorean thwl;e@ to not necessarily finite sums; just as in
the case of Bessel’s me\quahty we shall in the sequel use the phrase
Pythagorean theore??‘.},tzo refer to the generalized version.

\<&
\’\“ §9. Examples of Hilbert Spaces

A typigg\ﬁnd general example of a Hilbert space is the space 22(p) of
all compieéx-valued, measurable, and square-integrable functions on
meaéu\‘e space X with measure g (with the usual understanding that
two/functions which differ on a set of measure zero only are to be identi-
fied). The linear operations in this space (as in every function space) are
the usual pointwise operations and the inner product is defined by
(f, 9) = JFOg* O du(t).

An lmportant speeial case of the example in the preceding paragraph
is the one in which every subset of X is measurable and has as measure
the number of its points. By an obvious change of notation (from f (¢}
to £;) the typical element of this Hilbert space becomes a family {&;} of
complex numbers with the property that ;| §;|° < = scalar multi-
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plication, addition, and inner produet are defined by

afgd = {at}, (&1 + I = &+ wlb
and
(&5}, {nd) = Zigimi
respectively. (It is understood, of course, that the index set {41 is the
same for all vectors.)

An important generalization of the example in the preceding para- .
graph is obtained as follows. Let {©;} be a family of Hilbert spaces and
denote by Z,9; the set of all families {x;} of vectors such that 26.D;
for all § and such that Z;||2;{|® < . If scalar multiplication] addi-
tion, and inner produet are defined in 2,9; by N

alzyd = lex}, o) + (g = tes + ydy @
and \¥%
Uzshs Ay} = 2il@is vy

respectively, then Z;9; becomes a Hilbert spa}e (The proof of this
fact is a straightforward imitation of the prb};lf “that applies to the case
in which ©; = © for all j.) The space Z/9yis called the external direct
sum or simply the direct sum of the fartitty {§;} of Hilbert spaces.

Further examples of Hilbert spacesare: (i) the set of all those func-
tions, defined and analytie in thednterior of the unit circle in the complex
plane, the square of whose abiplute value 1s integrable with respect to
planar Lebesgue measure, and (i1) the set of all functions almost periodic
with exponent 2 in the fense of Besicoviteh.

NS
NV §10. Subspaces

A linear m’%fold is a non-empty subset Pt of § such that it z and y
are in IR, \ﬂlfén ax + By ¢ M for every pair of complex numbers o and §.
A subspace is a closed linear ‘manifold. The easicst examples of sub-
Spaeé dre the set O containing 0 only and the entire space $. Note that
s subspace of a Hilbert space is a Hilbert space and that therefore we
may (and frequently shall) apply to subspaces any proposition we
please, as long as it is true of all Hilbert spaces.

Tf u is Lebesgue measure in the real line, then the following subsets of
the Hilbert space %{u) are all linear manifolds:

(1) the set of all those funetions f in {u) for which 7(f) = f(—1) for
(almost) every ;
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(ii) the set of all those functions in fa{x) which vanish at {almost)
every point of a cerfain measurable set;

(1) the set of all (essentially) bounded functions in ¥u(u).
The first two of these scts are subspaces; the lust one demonstrates the
fact that there exist finear manifolds which are not elosed. For another
example of a linear manifold which is not a subspace censider the
Hilbert space of all families {1 of complex nombers such that
181 < o (of. §9) and the subset of all those families which have
only & finite number of non-zcro terms. N

It is casy to see that the intersection of uny fumily ol subypdess is a
subspace. 1t follows that it makes sense to define the subspaee Spanned
by an arbitrary subset M of $ (the span of YR, in symbuly N0 as the
intersection of all subspaces contaming 91, or, ('(111‘1\':}1(“‘1?11 I, a3 the least
subsapace containing M. \‘

TaroreMm 1. If I is a non-empty subset of S\wd of N ox the set of all
finite linear combinations of elemenis of M, Mt N @5 a loncar manifold
and YN = N (=the closure of N). \ .

Proof. 1t is clear that M is a linear mhnifold and hence that R is a
subspace; since M < T, the minigﬁ;ﬁ property of VI implies that
vt < N. On the other hand ‘tr-h;:"fuct that VI is a lincar manifold
implics that M < v IN. Since VM is closed, it follows that BN vk

If 9 and N are subspaces, we shall use the symbol IR v N for the sub-
space V(I u MN); mo.Ke’\igénerally, if {9} is any family of subspaces
then V,M; will degate’the subspace V (U;M,). It follows from these
definitions that IR is the least subspace containing both < and N,
and, more gem{al'ly, that V,;92; is the least subspace containing every
term of theAamily {9}

The egsential results of this section can be described rather simply
in the danguage of lattice theory. The possibility of a Jattice-theoretic
fomgliﬂsit.ion is based on the trite observation that the set of all sub-
spaces of  is a partially ordered set with respect to inclusion. The fact
that for any family {9;} of subspaces there exists a greatest subspace
(N;M,) contained in them all and there exists a least subspace (V; M)
containing them all may be expressed by saying that this partially
ordered set is a complete lattice, While this lattice has many interesting
properties, it is not in general so accomodating as to be distributive,
nor even modular. It turns out, in fact, that the lattice of all subspaces
of a Hilbert space is modular only in the familiar finite-dimensional

cases, and that it is distributive only for the extremely trivial spaces
whose dimension is 0 or 1.
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§11. VYectors in and out of Subspaces

A vector & is orthogonal to a subset I of , in symbols z L IR, i
z 1y for all y in M. The purpose of this section is to obtain two results
which our geometric intuition makes obvious and desirable. The first
result js that the minimum of the distances from any fixed vector to the
vectors of any fixed subspace is always attained; the second result is,
essentially, that if a subspace is a proper subset of 9, then there exists
a non-zero vector orthogonal to the subspace.

Tasorem L. If % 4s o subspace, if « is a veclor, and if & =
infllly — =iy e M}, then there exists a veclor o in M (Such
that || yo — 2 || = 8. O

Proof. Let {y.} be a sequence of vectors in I such that ||~g,,—‘-‘ z|l—
5. [t follows from the parallelogram law that '"\'\*
Now = g f? = 2l — 17+ 20w = 2 AN
— 41 3@F v — = ®
for every n and m. Since (. + ¥n) € T, if. doltows that
[ $yn + ym) — W 2 &

and hence that N\ :'.
lgn — g ||* S 2 g2 4 20y — 2117 = 45°,
Asn — oo and m — o, théwight side of the last written relation tends
to 287 + 25° — 46" = O¢so that {y.} 15 a Cauchy sequence. If ¥» — %o,
then , « M and, by,the continuity of the norm,
e — x|l = limafl g — 21l =

T‘HEOREM.,?:.\\ }f 9N and N are subspaces such that M C N and M = ",

then therg.elists a non-zero vector z in St such that z L Mm.

P @ﬂ “Let z be any vector in 9 which is not in M and write § =
inf {|| y — z||:y ¢ M}. By Theorem 1 there exists a vector yo in D% such
that [|go — x || = &; write 2 = % — & The fact that z = 0 fo}lows
from the fact that ¢ 0. Since 3o + a¥ € 9 for every vector y in M
and every complex number a, it follows that

liz+ eyl =@ +oap) —all 28
and hence that

05 iletayll—ll2ll® = a*@v) +a@a) +ial lyil®
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If, in partieular, & = B(z, ) for any real number 3, then
028 a7+ Bl gl

The validity of this inequality for small negative values of 8 implies
the vanishing of the coefficient of the linear term. We conclude that
z 1 3 and hence, sinee ¢ is an arbitrary vector in 91 that 2 1 90,

ilA

§12. Orthogonal Complements L

The orthogonal complement of a subset M of £, in svmbuls VYA, 18 the
set of all vectors z such that z © 9. If M and N are subxadds such
that ™M C R, the orthogonal complement of I in N, insymboeleM — M,
is the set 9t n M. OY

Tarorem 1. If M is a subset of D, then .'SJ}\& is n subspace
and Mo M~ C O, .

Proof. If z ¢ M and if y, and y. are in VY \thon for every pair of
complex numbers o and as A\

X

(:5: i s Q'Zy?) = ar(zs’y)j"—i‘_ a‘r(x: ."f?} = (]r

so that IN™ is a linear manifold, (l}lL“det that S0 is closed follows

from the continuity of the 1nner pmduct To see that M n M~ < O,
observe that if z ¢ M n M sthen z | 2.

Turorem 2. If Dt is mbm)set of ©, then M C M

Proaj. If:v ¢ I and\y M thenz | y, sothatz L EUEJ' and there-
fore z ¢ M

THEOREM 3. U EUI and M are subsets of O such that M C N, then
W DRt O

THEOREM. 4: If M is a subset of O, then M = D,

P, me Applying Theorem 2 to 0" in place of M, we obtain M C

.g:# . Applying, on the other hand, Theorem 3 to the relation 3t C
“, we obtain the reverse inclusion ¢ O -

The preceding results are easy and in a sense automatic. As another
such almost automatic result we mention the fact, whose proof is an
easy exercise in the use of orthogonal complementation, that if {;} isa
family of subspaces, then (v,;M,)" = N,;9; . The only non-trivial
assertion along these lines (Theorem 5) is a consequence of the geo-
metric discussion of the preceding section.

TeeorEM 5. If M is a subspace, then M = Pr- .
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Proof. According to Theorem 2, I < S . If M were a proper
subset of P, then, by 11.2, M- would have a non-zero vector in
common with P ; since this would contradiet the relation
g n P = D, the proof is complete.

1t is worth remarking that, applying the identity (V,; )" = N My
to the family {97} in place of {M;}, we obtain, in view of Theorem 5,
the identity (N ;M) = v;M; . :

To obtain the deepest and most useful fact about orthogonal com:
plementation (Theorem 7), we need an auxiliary coneept and an auxils
iary result which are of considerable interest in themselves. The concept
is that of the veetor sum of two subspaces I and N, in symbols P-N;
it is defined to be the set of all vectors of the form z 4+ y with'z ¢« M
and y ¢ M. It is easy to see that I + N C M vi]?a.ndth@tim + Nis
a linear manifold; the result is that in at least on@irﬁportant case
M + N is actually a subspace. The hypothesis sufficient to guarantee
this is that 0t and R are orthogonal, in symbols, I 1 %: this means,
naturally, that z £ T for every x in M. v

TuroREM 6. If TR and N are orthogondl suxbspaoes, then M + N s
closed. "

Proof. Suppose that {2,} is a sequér ce of vectors in I + N, so that,
for each 7, 2, = Zn - ¥y With 2, and y. ¢ T, and suppose that the
sequence {z.} converges to a vegber z in . By the Pythagorean theorem,
Nzn = 2m || = || 20 — xm{['%\-i— [| 4a — ¥m || for every n and m, and
therefore both sequences #&x} and {y.} are Cauchy sequences. fz.—x
and y, — ¥, then z e P and i e N; it follows from the continuity of addi-
tion that z, — z p\J-and hence that z e I + N

TEEOREM 7, r\';t‘fl;he projection theorem.) If MM is & subspace, then
M+ M :&

P mﬂf—,‘if M + M- = N, then, by Theorem 6, N is 2 subspace.
Sinee MIC 9t and D C N, it follows that - € M- and A C I,
and\tlfei:efore that W = . We conclude, as desired, that N=R""=
@_L = S‘:)‘ .

&Y

§13. Vector Sums

The coneept of vector sums, introduced in the preceding section,
deserves further study and generalization. The first step, namely the
pertinent definition, is easy: we define the pector sum of an arbitrary
family {90,} of subspaces, in symbols Z;M;, to be the set of all vectors
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of the form Z;z; with x; ¢ M; for all 7. It is casy Lo sce, just as in the
finite case, that =;M; is a linear manifold. As the following theorems
show, the very close connection between vector sums and spans alse
persists in the general! case.

Tueonem 1. If {41 4s e family of subspaces and Wt . 2,95, then
V;WE,- = S.DE

Proof. Since U;M; < M, and sinee 9O is a subspace, il Tollows that
V;IM; C M. Consider, on the other hand, the set of all those.vétors
of the form Z;x; for which x; ¢ M, for all j and for which =10 for
all but a finite number of values of 5. Sinee, by the definitipg O infinite
sums, this sot of vectors is dense in I, and since ,‘J_I[’ e elosed, it
follows that M < V;IM; and therefore that 3 C v, 9?

We call attention to the fact that Theorem 1 }«y\t Lontrivial state
ment even in the finite ease: it asserts that if PN M, are subspaces
and I = My 4+ My, then DV, v D& = P Wehdive seen that if i and
IR, are orthogonal, then 9 is closed and thedetfore W v W = I it s
natural to ask whether or not the baphthe closure operation) is ever
really necessary. In §15 we shall show that it is, i.e. that the vector
sum of two subspaces can fail to I}p W subspace,

We turn now to that part of t[w heor v of vector sums which behaves
1fselfi—in which, that is, the. patholotw we mentioned in the preceding
paragraph cannot occur. "A\ family {9,} of subspaces iy an orthogonsl
Famaly 3 M; 1 My v ichever § # k. (A veetor sum of an or thogonal
fammly of subspaced q:,\frequently called an orthogonal sum, an internal
direct sum, or smlgly a direct sum.)

THEOREM 2{~If {M;} 25 an orthegonal family of subspaces, then
v,y = B"Sfﬁ} ; the representalion of an element of Z,0M; in the form
Zix;, withr; ¢ M; for all j, s unique.

Pmof To prove the first part of the theotem, it is sufficient to show
h"&t V A ;ML I xoe VI, then, by the projection theorem,
}x each valuc of j there exists a vector x; in M ; and there exists a vector
y; in M7 such that z = z; + ;. If 2, = 0 for some j, then
(@, x5/ 2; ) = i 2, ]| and it follows therefore, from Bessel’s inequality,
that Z;{l 2,1 * < «. Applying 8.2, we sec that there exists a vector %o
such that z; = Z;z; ; we shall show that z, = z. If y ¢ M;, for some jo,
then (z — 20, %) = (2,0, ¥) + (W5, ¥) — (Z;2;,9) = 0 (by 7.3), ie.
£ — x 1 My, for all 7, . It follows that & — @ L =;M; and therefore,
by Theorem 1, that  — zo L V;M;. Since, however, x — 2o e V; 2%,
we conclude that indeed £ — =, = 0. To prove the second part of the
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theorern, it is sufficient to show that if Z;z; = 0, with x; ¢ I; for all 7,
then #; = 0 for all 7, and this follows from the (general) Pythagorean
theorem.

§14., Bases

A basis of a subspace M i a maximal orthonormal family of vectors
in M.

Although it follows immediately from Zorn’s lemma that every subs
space possesses a basis, it is sometimes possible to replace this frans’
finite argument by a construetive method; one such method ds.the
Gram-Schmidt orthogonalization process. The process s an induétive one
which, at its k-th stage, replaces the k-th term of a linearly indépendent
sequence {@,} of vectors by a vector i in such a way, that (1) y. is a

linear combination of @, - - - , Zx , {il) the sequence {y,.“}?l‘s orthonormal,
and (i) V{ys} = V{z.}. The process can be staxfed off by writing
w o= o/ x|l ; after gn, -+, e have been congtrt}cted, Yrq 15 Obtained

by normalizing the veetor @u — Zia(@arn@a )i -
Tf u is Lebesgue measure in the unit intetval, and if

L =1, '::fﬁ{"jgtg 1, »n=0, 1’2,...’

then the Gram-Schmidb orthogonslization process may be applied to
the sequence {f.} in the Hilbert space 2(u). The process yields a basis
of L(u) consisting of polynomials. Another basis of 2(u) is the sequence
{g.], where \\

gll) = 388 0<i<1, n=0 £, %2 .

A
In the Hilbert spgee of all families {£;} of complex numbers such that
g% < %"%he vectors {£°} defined by £¥ = &, constitute a basis.

THEOREI&E’}. A necessary and sufficient condition that an orthonormal
family ; {ég’_,-}"of veclors in @ subspace M satisfy all the following conditions
18 i@‘jf satisfy any one of them.

() The family {x;} is a basis of M.

(i) If o e P and if © L ; for all j, then x = 0.

(iii} If, for each j, T; is the subspace spanned by the set consisiing af
the single vector x; , then V;I; = M.

(iv) If z ¢ M, then © = Z{x, ;)x; . (Fourter ETPANSION.)

(V) If x and y are in M, then (z, ¥) = =iz, z)(x;, y). {(Parseval’s
identily.)

(i) If w « 0, then || 2} * = Z5)(m 2"
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Proof. We shall prove that each of the conditions (i), (i), (i), (iv),
and (v} implies the one following it and that (vi} implics (i).

() If z e M, if 2z L z; for all §, and if 2 # 0, then z/1) z || may be
adjoined to the family {z;}, in contradiction to the assumed maxi-
mality of that family.

(i) If v, M, & M, then, by 11.2, W contains a non-zero vector z such
that 1 x; for all 7.

(iii) Since [IM;} 1s an orthogonal family of subspaces, 13.2 ipaplies
that v, 9i; = Z;MM; and hence, if (11) is true, every veetor z in W has
the form Z;a;z; with suitable complex numbers «; . Il. fcﬁo?vs that
{(x, ) = Zjo5(x;, 2x) = ey for every index k.

(iv) Mo = Zja;z;andy = Z;8;2;, with aj = (x, .cj} ;md;&, = (y, z;)
for all j, then (z, ¥) = (Z;0;%;, Zfems) = Zj0; 854

(v) If (v) is true for all z and y in 9, then i 15&1119,, in particular,
when z = y.

{vi) If the {family {z;} is not maximal, sayQ‘oz instance, if it remains

orthonormal after the adjunction of a vu,t\r x, then that vector x does
not satisfy the relation (vi). O

S

_ > 3

§15. A Non-{@lt?sed Yector Sum

Familiarity with bases amd Touricr expansions enables us to give an
example of two subspaces\JIt and M such that M + N = WM v <N

To motivate the cérstruction, we recall first of all that if M L %,
then M + N = My v'ﬂgf i.e. that equality holds if ¢ and M are orthog-
onal. Equality «4#; be made not to hold by getting as far as possible
from orthogon%hty Intuitively speaking we may say that the subspaces
we shall congtruct make an angle of zero degrees; more precisely we
shall cog&*mct M and N so that MW n N = O and, for suitable normal-
ized yeefors x and ¢, in MM and N respectively, the inner product (z, 2)
(,Qme‘s arbitrarily near to 1.
\Eet {z.} and {y.} be two infinite orthonormal sequences such that
Tn L Y for all n and m, and write z, = a.%, + 8.y for every n, where
the coefficients a, and 8, will be determined presently. The first condition
that we wish to put on e, and 8. is that the sequence {z,}, which s
automatl{,all) orthogona.l shall be orthonormal as well, ie. that 1 =
| zal® = fan|® 4+ | Ba|® For the sake of simplicity we shall 1nSlSt
that «, and £r shall be strictly positive real numbers. Since in that case
(Tn , 2a) = a, for every n, it follows that the subspaces M = V {2}
and | = V{z.} will certainly have the property mentioned in the
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preceding paragraph if «, — L, or equivalently 8§, — 0,a8n — o, Fors
technical reason (which will become apparent soon) we choose to ensure
the validity of the relation 8. — 0 by selecting the 8.s so that .85 <
w. This is all the machinery we need; we remark that the sequences

.1
c0S 1} and {sm }1}, for example, have all the properties we demand of
T 3

fa,} and {8, respectively.

To prove that I + N = M v N, we have to exhibit a veetor ¥ in,
M v < such that y does not belong to MM + N. Since Zn B < o, 1%
follows that the sequence {8aYm] is summable; we assert that A%
3. Bnym , then the vector y has the desired properties. The fagt) that
an # 0 implies, indeed, that ¥ ¢ I + T for every m and<hépée that
y ¢ M v N. If it were true, however, that y e M+ RN saPy =2+ 2
with = ¢ D and 2 € M, then we should have AN\

B = (4, ym} = (@ + 2, Ym) = (2, ym) = (2al2, z{a{{ﬂ:: Ynm)
= (?r%v;}(zm s Um) = (2, 2n)fBm

for every m. Since 8. ¥ 0, it would then $otlow that {(z, 2n) = 1 for
every m, but since (2, #.) is the m-th F ourier coefficient of 2 with re-
spect to {z.}, this is preposterous. 3"

e

§16.§Dimension
TreorREM 1. Any twe Dases of a subspace IR have the same power.

Proof. Let {z;}afid {y:} be two bases of M, of powers u and v re-
spectively. Since a;\= (x5 , ya )y for each 7, the set K; of those indices
k for which (z;4%k) # 0 is countable. Since gz e M = V {z;}, no y, can
he arthogop;i%t"o all z;, ie. every index & 18 contained in U,;K;. It
follows thait" < Ng-u and, by symmetry, 4 = 8- v. If both wand v are
infinjte, the proof is eomplete; if either u or v is finite, the thecrem
redubes to a known result in the theory of finite-dimensional vector
spaces.

Theorem 1 allows us to define the dimension of a subspace 32 as the
common power of all bases of M. In the remainder of this section we
propose to show (Theorem 3) that in a scnse the dimension of the
Hilbert space $ completely determines the structure of 9.

An isomorphism from a Hilbert space $ onto a Hilbert space fisa
one-to-one linear transformation U from $ onto & such that (Uz, Uy) =
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(z, y) for every pair of vectors £ and ¥ in $; an somatry from a Hilbert
space § to a Hilbert space & is a linear transformation {7 from £ into

& such that || Uz || = |] z |} for every veetor & in . Ohserve that an
isometry deserves its name, ie. that, in virtue of the equation
| Uz — Uyl =11U& — »ll =!lz - yi}, an sometry preserves

not only norms (distances from 0) but all distances. Observe also that
an isomorphism is neeessarily an isometry. Sinee an isometry from
to § need not map $ onto &, 1L is easy to construct igometries which
are not isomorphisms; our next result shows that the into-ondo dis-
tinction is the only one between isomorphisms and isometries{ )

THEOREM 2. A linear transformation U from a I iibcru}}Jace Hioae
Hilbert space ® is an isomorphism if and only +f it isan Wometry, MaAppPing
$ onto K. &0

Proof. We have already seen that an isomotphism is an isometry.

If, conversely, U/ is an isomctry, and if M = {7y, then 0 =
| U — || = llz— ||, and it follows igeﬁszre that 7 1s one-to-one.
The fact that U preserves inner produgsfollows from the assumption

that if o(x, ) = (Uz, Uy) and ¢(z, y): = (z, y), then the bilinear fune-
tionals ¢ and ¢ induce the same quagdtatic form.

Two Hilbert spaces are called dsahorphic if there exists an isomorphism
between them. It follows fyo‘ni'the definition of an isomorphism and
from our observations 'cqncerning isomorphisms and isometries that
an isomorphism preseryegall the structure that went into the definition
of Hilbert spaces ar;d\t at, consequently, isomorphic Hilbert spaces are

geometrically indjsfinguishable and may legitimately be viewed as
identical. AN

lhEORn;M;"i Two Hilbert spaces are isomorphic if and only if they
have thq}\m‘ne dimension. :
Proof. In view of the intrinsic definition of dimension, the “only if”
) pq&'ﬁ'is obvious. Suppose, conversely, that § and & are Hilbert spaces of
the same dimension and let {z;} and {y;} be bases of § and & respec-
tively, indexed by the same set {}. If z = Z;a;=; is any vector in 9
and if Uz is defined to be =;a,y; , then U is clearly a linear transforma-
tion from $ onto R; since || Uz 1|* = Z;la;|" = ||z{|?, U is an
isometry. The proof is completed by an application of Theorem 2.

According to Theorem 3 any property that some Hilbert spaces do
and others do not possess can be characterized simply by counting.
Thus, for instance, a necessary and sufficient condition that $ be
separable is that the dimension of © be not greater than No. Tndeed,
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gince the distance between any two terms of an orthonormal family is
/3, it follows that if § is separable, then no orthonormal family can be
uncountable. If, on the other hand, a countable, maximal orthonormal
family {z;} exists, then the set of all finite linear combinations, with
coefficients whose real and imaginary parts are both rational, is a
countable dense set in .

§17. Boundedness

A linear transformation A from a Hilbert space $ to s Hilbert space
® is bounded if there exists & positive real number « such that || Ax\II‘“ﬁ
«|| 2 || for all z in $; the norm of A, in symbols || 4 [, is the mﬁmum
of all such values of a. &

TesoreM 1. A Ilinear transformation A from o Hiﬂ)ﬁx;N}Jace $foa
Hdbert space & i3 bounded if and only f 1t maps the dnit sphere (i.c. the
set z:|] 2 1| = 1)) onfo a bounded subset of & zfa = :{up Az l:ll =z ||=

Lithen{l 4] = e

Proof 1f A is bounded and || z || = 1, thef:l | Az I=lali-lzll=
| A ]| and therefore & = || A . I, conversely, a < o, then, for every
non-gere vector z, 3

1Az || = || Al = |- @/l| = DU = liA(:v/lI:vH)Il lzll & ailzli,
so that A is bounded and || 4 lI\S a.

TaeoreMm 2. A linear }snsfomwtwn A from o Hilberl space 9 lo o
Hilbert space 8 is bounded’if and only if i is continuous.

Proof. If A 1s bQﬁr;ded then its continuity follows from the relation
N4z — Ay}l A ]|z — y ]|, valid for all vectors # and y in 9.
Ii A is not b&nded then, for every positive infeger n, there exists a

1
vector x:w;n "% such that || z. || = 1 and || Az, || Z ». Since P B 0,
whelés}H A (}} xn)

The definition of boundedness and Theorems 1 and 2 apply in par-
ticular to linear transformations irom a Hilbert space © to the special
one-dimensional Hilbert space €, i.e. to linear functionals. In this
special ease there is available to us a powerful and elegant result which
completely characterizes all bounded linear functionals.

> 1, it follows that A is not continuous at 0.

TaroruM 3. (The Riesz representalion theorem Jor bounded Linear



32 I. THE GEOMETRY OF HILBERT SPACH

Junctionals.) A Unear functional & on  is bounded if and only if there
exists a veclor y such that £(e) = (r, ) for all &+ such a T R A
unigque.

Proof. 11 £(z) = (2, y) for all 2, then | Eel = Vx| Yyl, so that
£ 1s bounded and, in fact, || £]] <] 4 |- (It 1% eusy, but for our pur-
poses unnecessary, to prove that [ £ = |}z [ ) The uniqueness of ¢
tollows from 4.1.

If, conversely, £ is u bounded linenr functionnl and if W o=
{28(x) = 0, then M is o subspace. [T M = O, then £(xis indeed
klentically equal to (x, ¥) with y = 0. If 9 = 9, then }U{"\“contains a
non-zere veetor 2; weshall prove that o suitable i iple‘az of zis an
admissible y. No matter what the value of o 15, it il cWar that if ¥ =
az, then £(x) = 0 = (z, y¥) whenever z € 9. If, ot thet: other hand, & =
Bz for some complex number 8, then (z, y) =082 az) = o*B | 2]|% s0
that a necessary and sufficient condition for the validity of the identity
E(B2) = (Bz, y} is that & = £*(2)/|| z || . With this choice of « it is then
true that {(z) = (z, y), with y = az, i &ither z € M or 2 is & multiple
of z. Since for an arbitrary vector z i, x — Bz ¢ M if 8 = £(z)/E)
(note that £(z) = 0), it foilows.:th%xt () = Ha — B2y + £B2) =
(:B - IBZ) y) + (Bz) y) = (x, y}':“

3

§18. Bguﬁded Bilinear Functionals

Since a linear funefioal is a linear transformation, any meaningful
statement that applies to all linear transformations applies, in particu-
lar, to linear funetionals. Since bilinear functionals and quadratic forms
are not 1ine{a.\:tfansformatinns, their theory is not a special case but
merely ancanalog of the theory of linear transformations. The a.nalOE_Y
is quitesalose. We shall, for instance, say that s bilinear functional ¢ i
bounded \if there exists a positive real number « such that | ¢(z, ¥)] =
aJlB{ g for every pair of vectors x and ¥ in §, and we dafine the

grm of ¢, in symbols || ¢ || , as the infimum of all such values of e
We shall also say that a quadratic form ¢ is bounded if there exists a
positive real number o such that 1é()) £ af|z]|® for all z in $; the
norm of &, in symbols || & ||, is the infimum of all such values of . Tl?e
first result of the preceding section may be stated (and proved) an
almost exactly the same way for bilinear functionals and quadratic
forms as for linear transformations.

THEOREM 1. If ¢ 4s @ bilinear SFunctional on  and if

@ =8up {|o(z, Pzl = [Iyl}| = 1},
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then o necessary and sufficient condition that ¢ be bounded is thal @ < =3
if ¢ g5 hounded, then ||| = a. If & is a quadratic form on O and if

@ = sup {| $@): [ || = 11,

then & necessary and sufficient condition thal & be bounded is thul o < ©;
if & is bounded, then || § [} = o
The intevesting and useful results along these lincs concern the rela-
tions between the norm of a bilinear funelional and the norm of its
induced quadratic form. ~
TreoreM 2. The quadratic form $ induced by a elinear functiongl »
is bounded if and only if ¢ is bounded; if ¢ and & are bounded, ﬂg{f’fbg\

1ol = el S 2121

Proof. If o is bounded, then | &) = | o=, 2)] £ (Pt [|-[| = ||
for all ; it follows that & is bounded and that || & Nt e || - If, con-
versely, ¢ is bounded, then, by polarization,

/

. AN
lole, )l < 2il el Uiz +yll*+llz—y 124
et a4 e — i)

and hence, by the parallelogram law, ON°
Loz, )l < o llghz 17 + Uy [l

for every pair of veetors z ar@ . Tt follows that | {2, Pl =2l
whenever || z || = }| ¥ {i =¢ Lﬁﬂ»ﬁd consequently (by Theorem 1) ¢ 1s
bounded and || ¢ || < 2 &Y™

Tt is not difficult tq\’cbﬁstruct examples (in finite-dimensional spaces)
to show that the inéqualities in Theorem 2 are in general best possible,
They allow, however, a considerable improvement in the symmetrie
case. N\

TuzorEMS. If is o bounded, symmetric, bilinear functional, then
el =8 -

P?’Eﬁff We need only prove that || ¢l = {| & || . Since the symmetry
.of ¢ implies that § is real, polarization ghows that the real part of ¢
is given by the equation

Re(z, 1) = ¢z + ¥)) — &Gz — y).
It follows that
| Rotz, )l = 2l181-(lz+gll*+ 0z —yllH
=iliell-Wahi®+Uwil®,
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and therefore that Mefz, yii = & whenever ;0

e = L Fo
an arbitrary, but temporarily fixed, paiv of veetors .« andd ywith Lzl =
Uy = 1, Jet @ be ncomplex number of abrobute vabie | osuch that
bp(x, ¥) =

Loty il - The ineguality just derived, when applied to
gr and gy, imphes that

Lol )] = eltr, y) = D Rellr, ) =81

and therefore the proof may be completed by an upplication of
Theorem |,

A
™y’
&N
Q\:\‘i*
AN
N
~O



CHAPTER 11
THE ALGEBRA OF OPERATORS

§19. Operators
An operator is a bounded linear transformation from $ into .

TuroreM 1. If A and B are operaiors and if, for every veclor z ahd
for every complew number a, (ad)z = aldz), (A + Bl = Az ANBY,
and (ABR)z = A{Bz), then ad, A + B, and AB are operators, such that
T ll = 1ol - WA 1A+ BN = LAL -+ 1 Bl anghAB 1|
lal- Bl | Y

Proof. Tt is obvious that ad, A + B,and AB arc hinear transforma-
tions from © jnto . The fact that they are bqupﬁeﬂ, and that their
norms behave ag asserted, follows from the relz}th;aﬁs

fatdn) || = jal - [z, | Az + Boll S PAzli+ 11 Be |
Sz Al s sl

ol

and
ha@a = 1Al FLB-’G h=tiall Bl

A painless verification sk@uws that the set of all operators on Hisa
complex vector space ith respect to the scalar multiplication and
addition defined in Theorem 1, and that the multiplication there de-
seribed is associatie and bilinear—in other words that with respect
to these opera&'{a@\s; {he set of all operators on § 18 an algebra. This algebra
contains a udit, ealled the identity operator and denoted by the symbaol
151t is @e\ﬁnbd by writing 1z = % for all z. No confusion will arise from
usin{:h;@ same symbol for an operator as for a number, nor even irom
generalizing this notation and, for any complex number e, using the
symbol « to denote also the operator al. Observe that we are thereby
committed to using the symbol 0 for the operator such that 0z = 0 for
all z.

As in every algebra, we shall use the symbol 4" to denote the product
of n factors all equal to 4, 7 = 1,2, ="~ 3 A% s defined to be 1. More
generally if p is any (complex) polynomial, p(\) = Z sa;N, we shall
use the symbol p(4) for the operator Tia 4.

35
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To these algebraie remarks we adjoin a resull concerning a yseful
aspeet of the most important topologies! property el vontinnity)
that an operator posseases.

Fnronrest 20 If A 25 an operator, & i a vector, and Lot s a famly
of veetors such that a0, = x) Hhen 2,10, Ar.

Proof. Tor any positive number ¢ owe may find o fieore sel Jy of
indices snch that [ 2 = 3,7, || < ¢ whenever J s o fingie set of ipdices
containing J, . Tt follows that || Ae — 2,42, || £ | A ||¢ wheaever
J 2 Jy, and this implies that 2, A, = Ar \’ \))

Ny

P !

§20. Examples of Operators “.t

Since considerafions concerning operators will,sg t\p\' s during most

of the remainder of this hook, it might be a pogdhiden to luok at o few
of them. INY

(1) One of the most classical [33(11111;)]&:;;5;'3\(1}11uinﬂl as fullows. Let X
he a measure space with measure w, wid let & be a complex-valued
measurable function on the Cartesiadproduct of X with itsclf, square-
integrable with respect to the pl(adut’t mensure in that Cartesian produet
space. If [ e(p), and if Af =39, where ¢(s) = [ ks, Of(¢] du(l), then
A iz an operator on $.(u). '

(i) Another operatop©h'the space Qu(u) is obtained by selecting
fixed, cssentially bourided, measurable function 2 on X and writing

Af = g, where g(){= R(Df(1). Operators of this type are of sufficiently
general interestatd importance to deserve a name; we shall refer to the
opoerator A a'.?{“the multiplication operator, or simply the multiplication,
defined bind)

If X _id\the interior of the unit cirele in the complex plane, if A(A) = A
for m\m'jr M in X, if u is Lebesgue measure, and if instead of 2(u) we

«On 31dt‘r the subspace of analytie funetions described in §9(i), we ohtain
an"interesting and significantly different variant of this example.

(iii) For another example, let 7' be a one-to-one measurc- -preserving
transformation of X onto itself and write Af = ¢, where g{s) = [ (T's).
To obtain an easily manageable special ease, let X be the real line, leb
# be Lebesgue measure, and define T by Ts = s 4+ 1. A useful generaliza-
tion of this special case is obtained by replacing the real line by any
locally compact topological group, replacing p by its left Faar measure,
and defining 7 to he, say, left multiplication by a fixed element.

(iv) Consider the Hilbert space of all sequences {£.} of complex
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qumbers (n = 1,2, -+ ) such that Za |8 ' < «,and write A{f} =
i1}, where n. = £, Tor all n. Formaily the samo definiticn of A yiclds
a signiﬁca.ntly different, operator if we consider instead the Hilbert
space of 41 familics {£,} of complex numbers, n = 0, = 1, £ 2,---.
Instead of writing g, = a1, W might have written . = T wlnmbm
where oam = Ontim different. examples of operators are obtained by
varying the matrix [am}. We shall not enter into a discussion of what
conditions n matrix must satisfy in order to define an operator, but,
by way of a hint that will at least vield a sufficient condition, we remark
that the operators defined by matrices are special cascs of operdtors
defined by integral kernels; cf. example (). A\

§21. Inverses ; \ :

An operator A is smwertible if there exists an opcfa:tor B such that
AB = BA = 1. The reader should be as compefitt as the author at
constructing examples of operators which ar 4od of operators which
are nob invertible simply by examining the'ciamples given in the pre-
ceding seeiion. R

Trworkm 1. If A, B, and C are dﬁé?&icrs such that AB = CA = 1,
then B = C, and consequenily Avis “invertible.

Proof. B=1-B = (CAJB = C(AB) =0¢-1=0C

It follows from T‘heo{e L) that if an operator A is invertible, then
there wxists only oneyoperator B cuch that BA = AB = 1; we shall
write B = A™" andsgall A" the inverse of A. Qtandard clementary comn-
siderations prove “what if A and B are invertible operators and if » is
a positive Infege ~then the operators A7 AB, and A" are invertible,
and their \i»x\ks‘zefses are given by the equations (A" = 4, (ABY™ =
BT A and (A = (A", In view of the last relation we may con-
sistently define A", for invertible operators A and negative integers #,
BRA™ = (A7)

Tt is ugeful to have at hand some geometric conditions for invertibility;
such conditions can be given 1n terms of the range of an operator. Recall
that the range of an operator 4 is the set of all vectors of the form Az;
the range of an operator is always a linear manifold, but it is not neces-
sarily a subspace. :

Tueorem 2. If A is an operaior and o is o positive real number such
that || Az )| = a ||z || for every vectr T, then the range of A s closed.

Proof. If yn = A%w, 1 = 1,2, and if ya — ¥, then, since we
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Yo — Ymll = || Axe — Azn|] Z a||2a — 2. || fov all # and m,
it follows that {z.} is a Cauchy sequence aund hence thut there existg
a vector x such that x, — z. The continuity of A implies that ¥ = Ag
and hence that y Is in the range of 4.

Turorem 3. An operator A dis invertible if and only if s range 4s
dense in ) and there exisis a positive real number a such that |' Az |] 2
e || z ! for cvery vector . )

Proof. If A isinvertible and if i € O, write £ = A 'y since A% —\y,
it follows that the range of A is not only dense in £ but, m\f;wf 0-
incides with $. It follows also (hat, for every veelor x, O

ol = 1lA el = A7) - 1] Au I

Le, that the condition of the theorem is satisfied wf&}? a = 1/ 47
Suppose now that the range of A is dense and thidNY e | = o || 2| for
all z. According to Theorem 2 we may conclude/that the range of 4 is
in fact equal to . If Az, = Ax,,ie. Ax, —&1‘1:2 = {), then

0--I|A.$1_A3‘2|| C"HTJ_:CZl:

and therefore z, = =, This implies. that not only is it true that cvery
vector ¥ in § has the form Az for Some z In $, but in fact there is ex-
actly one such z, and a .f:mgle vilued transformation B of © inlo itsclf
is defined by writing By .m‘s;. Since B is easily verified to be lincar, and
since |y {] = || Az || \&ﬁa: || = « | By ||, it follows that B is an
operator {and we eyen obtain the inequality || B|| £ 1/a). The rela-
tions ABy = Az iﬁiy'and BAs = By = g show that AB = B4 = 1,
and hence that‘é:is invertible (and we even obtain the result B = A7)

'\\“ §22. Adjoints

If, A; 45 a (not necessarily bounded) linear transformation from §
rghf)’ and if ¢z, y) = (A2, y) for every pair of vectors z and ¥, then
¢ i8a bilinear functional. The elementary properties of the inner product.
imply that if A; and A, are two linear transformations from  into £
such that (A;x, y) = (Asz, y) for all z and y, then A, = A, . These facts
together with 3.2 show that if only (4,2, ) = (dax, ) for all x, then
already A, = A;. We begin the proper business of this section by show-
ing that the connection between linear transformations and bilinear
funetionals goes quite a bit deeper than these superficial remarks.

TuEOREM 1. If A is an operator and if o(z, y) = (A&, y) for all z
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and i, then p 18 @ bounded bilinear functional and f| ¢ || = IV AN If, con-
versely, ¢ 18 o bounded bilinear functional, then there exists @ URGHe 0pera-
tor A such that o(z, ¥) = Az, ) for all x and y.

" Preof. 1f A is an operator and if ¢(x, 4} = (Az, 3), then | {z, i
WAl - e -yl for all 7 and 3 and consequently |le | = 1AL
I, conversely, ¢ 18 2 bounded bilinear functional and if 7.(4) = oz, ¥)
for all z and y, then, for each fixed z, 7.* is a bounded linear functional.
It follows from the Riesz representation theorem (17.3) that there exists
a unique vector A2 such that o(z, ¥} = (dz, y) for all . The lincarity™
of the transformation 4 thereby defined is casily verified; its uniqueness
follows from our remarks at the beginning of this section. Since\ "

Az — (A, A2) = vle, 49 5 el 1] LA T

it foliows that | Az || = [lell- 1l 1| for all =. But. fhis implies that
4 is bounded and |} 4 || £ {le|l, so that the prootyus complete.

Observe that it follows from the first pa ’:p}}‘l‘hearem 1, together
with 18.1, that || 4 || = sup ] Az, 1) Lokl = |yl = 1} for any
operator 4. )Y

Tueokem 2. If 4 13 an opemtor,,;ﬂajén there exists @ unigue operaior
A*, called the adjoint of A, such it Az, ¥) = @ A*y) for all « and
y: A* i3 such that || A* || = 1| AN

Proof. Write o{z, ) = @) y) and ¥(z, ¥) = W xz) for all z and
y. Bince, by Theorem 1,'\69. is a bounded bilinear functional, and since
this implies that ¢ is &, b}unded bilinear functional with || ¢ = llell =
Il 41, it follows fram-the converse part of Theorem 1 that there exists
an operator A* SL}Eh that ¥(z, ¥) = (4%, y) for all # and ¥ and that
A% is such that] 4% || = llwll = [14 ||. Since the uniqueness of A*
is clear, tpq\pr’oof is completed by the obvious computation: {4z, 4) =
oo, YL WAy, 7 = (A% 2% = (z, A*y).

”Bﬁe\'behavior of adjoints can be understood by construeting the ad-
j&nt‘s of the varicus operators deseribed in §20. We ¢all special attention
to the example of a multiplication restricted to the analytic functions:
its adjoint is not what at first it might appear to be.

Tusorexm 3. If A and B are operalors and o is @ complex number,
then

i) A% = A,
(ﬁ) (aA)* = a*A*,
(i) (A + B)* = A* + B
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and
(iv) (AB)Y* = B*A*,
(v) if A is invertible, then A* is inverttble and (4*)™ = (A",

Proof. Each of the five assertions is implied by the corresponding
one of the following five identities,

W) (A*z, y) = (y, A*0)* = (Ay, 2)* = (x, Ay).

(M) {adz, ¥) = oldz, ) = alz, A%y} = (z, *A%y). ~

(i) (4 + Bz, ) = (A=, 9) + By, y) = (3, A*y) + (&, By =
(@, A%y + BYy) = (z, (A* + BMy). ¢O)

(iv} (ABz, y) = (Bx, A*y) = (z, B*AYy). O

(v) (A7Y*A* = (AA7H* and A*A™HY* = (_4‘111)*,(..}."'

Turorem 4. If A is an operator, then || A*4 :—{1 AR

Proof. It follows from Theorem 2 that || A*AJpE/ || A*| - )| 4[] =
I 4 |*. On the other hand || Az || = (A, Az) =\({* Az, ) = |' A*4 || -
|2 |[* for cvery vector z and therefore |}1KH < jhA*A |

$23. lnv;;rfal;ce
A subspace I is tnvariant undertiin operator A if AT C M, e if

Az ¢ M whenever z e Di; a subspaee M reduces an operator A if both
M and MW are invariant under 4.

A\
TuroreMm 1. If cac o(L o family |} of subspaces is tneariant under
an operator A [or reguces A, then V;9M; and N;M; are both Tnvariont
under A [or reduce ¢ .

TurOREM 2.9 necessary and sufficient condition thal a subspace m
be in.varzfan\zi}?td‘er an operator A 45 that W be tnvariant under A¥.

Froof. ~}\ﬁ symmetry it is sufficient to prove that the condition is
necessa\ryf If 9 is invariant under A, and if z ¢ M and y e M, f-}l_len
{wA%) = (dz, ) = 0, so that A*ye N, and consequently I 1s
invafiant under A%,

We record tor later reference an immediate corollary of Theorem 2.

TueoreM 3. A necessary and sufficient condition that o subspace M
reduce an operator A 1s that @t be invariani under both A and A*.

The difference between invariance and reduction is somewhat subtle
and it is worth while to take a close look at an example. Consider a
Hilbert space which has an infinite sequence {x.} as a basis, n = I,
2, -+-, and define an operator A by A(Z,0.2:) = Znauan; cf. §20
(iv). There are many non-trivial subspaces invariant under A; con-
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crete examples may be obtained by selecting a fixed positive integer m
and forming the subspace V {Zngmin = 1,2, -+ }. We assert, however,

that the only subspaces which reduce A are £ and §, or, in other words,

that if a subspace IR reduces 4 and contains a non-zero vector , then

g = $. To prove this it is convenient to employ Theorem 3 and it is

necessary, therefore, to discover A%, an immediate computation shows

that 4% is defined by 4*(Z. @nFn) = ZnllnpiZa. If Zpanxs i8 the Fourier

expansion of the given non-zero vector z and if m is the lowest positive

integer such that am 7 0, then £ = Zn@n@n = ZaOnimilnim_i. DIACE
the assumption that 97 reduces 4, together with Theorem 3, shows that

§ = ZulnimTntm = A™MAMY "z ¢ M, it follows that entn = & — y, €M

and hence that z,. e M. Another application of the same reasQuing

chows that z. = A" (A% 'z, ¢ M for all » and it follows indeed

that M = H. A 3

S\

§24. Hermitian Operators O
An operator A is Hermitian ¢f A = A \\

TaroREM 1. A mecessary and sufficient gonddtion that an operafor A
be Hermitian s that the bilinear functz'qn@ 7, defined for every pair of
veetors x and y by oz, ¥) = (dz, ¥), b.&_symmeéric.

/'

Proof. A mnecessary and sufﬁcieﬁt'céndit-ion that oz, ) = ¢* ¥, @)

for all x and y is that (Az, ) \: (y, A*x)* = (A%, y) for all & and .
As sn immediate cons&?&ice of Theorem 1 and what we already

know about bilinear fuactionals (cf. 3.3, 18.3, and 22.1) we obtain the
following characterizagion of Hermitian operators and their norms.

A%
THEOREM 2, Aqioperator A is Hermition of and only if (Az, x) is real for
every veclor ©; if A\is Hermitian, then || A || = sup { | (4%, %) ;)| =]} = 1}-

Most of the ‘algebraic properties of the set of Hermitian operators
follow quit-é"trivially from the definition. It is, for instance, clear that
aregl Selar multiple of a Hermitian operator and the sum of two Hermi-
tian Oerators are Hermitian, and that the inverse of an invertible Her-
mitian operator is also Hermitian. To describe the situation concerning
products of Hermitian operators, it is convenient now to introduce a
concept and a symbol which we ghall have frequent occasion to use.
We shall say that an operator 4 commutes with an operator B, and we

shall write A < B, if AB = BA.

Tueorem 3. The product of two Hermitian operators A and B s
Hermitian if and only if A <> B.



42 1. THE ALGEBRA OF OPERATORS

Proof. Bince (AB)* = BA, the equations (AR)* = ABand BA = 4p
are obviously equivalent.

From Theorem 3 and the discussion that preceded it we conelude that
if A is » Hermitian operator and p s a real polynomial, then p(4) is
Hermifian.

The evidence we have collected tends to show (¢f. in particular
Theorem 1} that if we think of an operator as a gencralized comples
number, then we should think of a Hermitian operator as a goq:rahzed
real number. Such an attitude is quite fruitiul. It suggests, for instance,
that we may define a concept of positiveness for Hermitiah, operators:
we shall, indeed, say that a Hermitian operator 4 is po&z‘me in symbols
A = 0,if (Ax, 2) = 0 for every veclor z. It is nb).wus that a positive
multiple of a positive operator and the sum of Wb positive operators
are positive. We may continue further along the}me:: suggested by these
considerations and define & partial order in$he"set of Hermitian opera-
tors by writing A £ B whenever B —:‘A\\i’s positive. This ordering is
proper (le.if A £ Band B < A, thén"A = B) and transitive (i.e. if
A =Band B £ C, then A = (') We shall have opportunity fo refer
to some of these | {ucts later.

"l
P o

» ,"

§25. Norrnal and Unitary Operators

If A is any operaton,\’then there exist two uniquely determined Her-
mitian operators B, and C such that A = B + C: in this respect also
Hermitian operatc}s imitate the behavior of real numbers. The cxistence
of what mlght herealled the real and the imaginary parts of 4 is proved

by exphc;t@c (‘xh]bxtmg them through the equations B = —(A + 4%)

and @\\= —(A — A™); uniqueness follows from the observation that

1fA B-i-‘lC then A* = B* — jC*,

“\"“The fact that in general the real and the imaginary parts of an operator
fail to commute is what makes operator theory significantly harder than
the corresponding theory of complex numbers and motivates the defini-
tion of a normal operator as one for which this pathology does not ceeur.
More explicitly, an operator A is called normal if A «» A*;ifAd = B+ iC,
with B and C Hermitian, then it is easy to see that a necessary and
sufficient condition for the normality of A is the relation B « C.

TeEOREM 1. A necessary and sufficient condition thai an operaior A
be normal s that || Az || = || A*z || for every vector z.
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Proof. Sinee (AB)* = BA, the cquations (AB)* = ABand BA = AR
are ohviously eguivalent.

From Theorem 3 and the discussion that preceded it we conclude that
i A is & Hermitian operator and p is n real polynomial, then p(A) is
Hermitian.

The evidenee we have collected tends to show (cf. in particular
Theorem 1) that if we think of an operator as a soneralized complex
nurnber, then we should think of a Tlermitian operator as a gencrahzed
real mumber. Such an attitude is quite fruitful, TU suggests, for instafiee,
{hat we may define a concept of positiveness for Hermitian operators;
we shall, indeed, suy that a Tlermitian operator A1 positive, .i\fl"s*fmbols
A = 0,if (Az, z) = 0 for every veetor 2. 1t 1s obvious thatn positive
multiple of a positive operator and the sum of 1wo wfs’x't}vc operators
are positive. We may continue further along the 1i11c§~’§b’1ggcsted by these
considerations and define a partinl order in the s¢liof Tlermitian opera-
tors by writing A = B whenever B — A is positive. This ordering is
proper (ie. if A £ Band B £ 4, then 4 ALOR) and transitive (e if
A< Band B £ C, then A4 2 (). We’shﬁ}l have opportunily to refer
to some of these facts later. A\

§25. Normal aifid Unitary Operators

If A 1s any operator, thert there exist two uniquely determined Her-
mitian operators B and G Bich that 4 = B + iC": in this respect also
Hermitian operators II'IN\@LJEG the behavior of real numbers. The existence
of what might be gallgd the real and the imaginary parts of 4 1s proved

AX
by explicitly exhibiting them through the equations B = % (4 + A%)
S .

and C ;’%—EM — A%); uniqueness follows from the observation that

if A~B + iC, then A* = B* — iC*.

“Thé fact that in general the real and the imaginary parts of an operator
fail to commute is what makes operator theory significantly barder than
the corresponding theory of complex numbers and motivates the defini-
tion of a normal operator as one for which this pathology does not. oceur.
More explicitly, an operator A is called normal if A <> A% if A = B +1C,
with B and C Hermitian, then it is easy to see that a necessary and
sufficient condition for the normality of A is the relation B <> C.

TasorEM 1. A necessary and sufficient condition that an operator A
be normal 4s that || Az || = || A*x || for every vecior =.
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Proof. Since I\ Az P = (Ax, Az) = (A*Az, z) and, similarly,
| A¥z I = (4%, A¥z) = (Ad*z, =), the identity of the left sides of
these relations 18 equivalent to the identity of their right sides and the
latter is equivalent to normality.

One source of the importance of the concept of normality is that many
facts about Flermitian operators do not depend on the identity Az = A%z
but only on the identity || Az |l = || A*z |}, and, in virtue of Theorem
1, all such facts are valid for normal operators.

There is a speeial class of normal operators of considerable interest
namely the operators {7 which satisfy the equations gur = U =L
such operators are called unilary. In the same Sense in which He’rr{ii’ﬁafn
operators are generalized real numbers, unitary operators are generalized
ecomplex numbers of absolute value 1. Observe that a unitg&ﬁ'ﬁperator
is invertible and that in fact unitary operators may ‘g&@haracteﬁzed
as those invertible operators U for which vl = &

The main reason for the interest of unitary operators is that they are
exactly the automorphisms of $. By an autom@"p_ ism of © we mean,
of course, an isomorphism from $ onto HHObscrve that since an iso-
morphism is an isometry, it follows that, ar¢ automorphism is in par-
ticular an operator. N

THECREM 2. A necessary and s}»’ﬁéient condition that an operator U
be an automorphism of D 18 thaldhbe unilary.

Proof. Observe that .siné:'z\(Ux, Uyy = (T*Uz, ¥) the equation
UMD — 1 implies and, is\implied by the identity (Ux, Ug) = (& 1)
8ince a unitary operat.o;;'is invertible and, consequently, i3 & one-to-one
transformation irgm® ento ©, we infer from this obscrvation that a
unifary npera’qo{;ﬁs"an automorphism. Since (ef. 21.3) an automorphism
is also an invertible operator, W€ infer from the same pbservation that
if U7 is an };L}tomorphism then W = U* and hence that T is unitary

.’\'

A §26. Projec gions

The projeciton on a subspace 9 18 the transformation .P defined, for
every vector z of the form z + ¥, with T € ot and ¥ e D, bY P: = &

Tugorem 1. The projeciion P on & subspace M 15 an idempotent
(P* = P) and Hermition (p* = P) operator; if M O, then|| P I} = 1.

Proof. It follows from 13.2 and the projection theorem {(whose
name is hereby justified) that Pis a single-va‘lued transformation from
$ into ©; the fact that P is linear is clear, If 2 = & 4y, with x ¢ M



44 II. THE ALGEBLa OF OPERATORS

and i « I, then

WPz 1% = Jle ] s [=l® ]yl =[]

¥

30 that P is bounded and || P || £ . Since £% = Py = ¢ = Pz, it
follows that P is idempotent. If 9 contuins & non-zero veetor z, then
the fact that £r = x implies that | [ = |. If, fnally, z; = z; 4 y;,

with z; e Mand i, ¢ M", j = 1, 2, then
Pz, ) = (0, 2) = (5, y:) = (2, @) = (7, Pz}, \
so that P is Hermitian. ‘O)
'N\S “

Tunonem 2. If P is the projection on a subspaee N and of !y =
o1 Px = &} and M is the range of P, then My = M, AT

Proof. Tt follows immediately from the definitighdof I, , M, , and
P that My < M C M. I, on the other hand, gy, then Pz = T, 50

that 9 C IR, and consequently all these illf{\lﬁi{)ﬂ relations reduce to
equalities.

R
THEOREM 3. If P s the projection Onva subspace N and if x s ¢
veclor such that || Pz |l = ||z ||, then Bo = z (and therefore © ¢ M).

Proof. Bince x = Pr + (@\~ Pz) and since Pz ¢ 9 and
z — Pz e M7, it follows thatffe||® = || Pz ||® + [z — Pr|i® the
fact that || Pz || = || 2 || implies therefore that ||z — Pz || = 0.

Taeorem 4. If P is @};\idempotenz Hermitian operator and f I 4s
the subspace {z:Pz 3 By then P is the projection on IR,

Proof. Since P.i8.ddempotent, it follows that P(Pz) = Pz for all %
since P is Hermjtian, it follows, for every vector z in I, that
(£, 2 — P2) ;{X&, 2) — {Pz, z) = 0 for all z. In other words, Pz ¢ ™
and z — R{e I for all 2; the theorem follows from the definition of
projections’and the identity z = Pz + (z — Pa).

.mfle;‘éénclude this section with the elementary but exceedingly useful

comment that if P is a projection, then (Px, z) = || Pz||?® for every

vector z. The proof of the comment is the following self-explanatory
chain of identities:

(Pz, ) = (PPz, z) = (Pz, P*z) = (Px, Pz) = || Pz || %

§27. Projections and Subspaces

In view of the results of the preceding section, there is a natural one-
to-one correspondence between subspaces and idempotent Hermitian
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operators. It is in principle possible, therefore, to express all the geo-
metric properties of subspaces in terms of the algebraic properties of
their projections. We propose in the following sections to show in de-
tail how that may be done; we begin in the present section by describ-
ing the algebraic formulations of invariance, reduction, orthogonal
complementation, and orthogonality.

TrworeM 1. A subspace M with projection P is invariant under an
operator A if and only if AP = PAP. )

Proof. 1If AP = PAF and if € 9, then Az = APr = PAPz ¢ IR,
If, converscly, 91 is invariant under A, then APz € It and theréfore
APz = PAPz for every veetor x. S\

Tunorem 2. A subspace M with projection P reduces ar operator A
if and only if P A \\

Proof. 1f AP = PA, then, multiplying this relatioh by P on the
right and on the left, we see that both AP and Pd\dre equal to PAP.
By the formation of adjoints we obtain the restlf that both A*P and
PA* are equal to PA*P. Since, in view of Théorem 1, the simultaneous
validity of the relations AP = PAP and A¥P = PA™P 15 equivalent to
the assertion that Mt is invariant ur;def “both 4 and A*, the desired
result follows from 23.3. Ry \

TrzoreM 3. If P is the projection on o subspace o, then 1 — P 18
the projection on M and EUEJ"\F {z:Px = 0}.

Proof. A trivial Veriﬁe\éti'on shows that 1 — P is idempotent and
Hermitian and hence that 1 — P is the projection on some subspace N.
By 26.2, M = {ri & Pz =z} = {zPz = 0} ; the fact that, there-
fore, N = M foligws from the definition of projections.

N\ .
Tarorey b If M ond N are subspaces with projeclions P and @
?‘espcciive&j;’hen a necessary and sufficient condition for the validily of

all tfl».g ;‘Foﬁo@mg relations is the validity of any one of them.

v m LR

(iia) PQ = 0.
(iib) QP = 0.
(iiia) PR = D.
(iiiib) QM = .

Proof. It L N, then N < g, Since Qz ¢ N for all =, it follows
(by Theorem 3) that PQz = 0 for all z. f PQ = Oand  x ¢ 9%, then
Qr = z and therefore Px = PQz = 0, so that P = O I, finally,
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P = 1, then (again by Theorem 3) M < 9" and therefore MM 1 %,
These arguments prove the equivalence of (1), (iia), and (ifia); the
equivalence of these relations to (iib) and (iiih) follows by symetry,
Alternatively we may derive (iia) and (iib} from each other by the
consideration of adjoints, and, after observing that (iia) and (iiib}
may be expressed in the form N € M and M N respectively,
derive them from cach other by orthogonal cormplementation,

Q.
Justified by Theorem 4 we shall find it convenient to suy thafMwe
projections I and Q are orthogonal, in symbols P 1. Q, if PEE\D.
7NN *

L W

SN

§28. Sums of Projections )

In order to discuss the theory of sums of projcctixfné in the necessary
gencrality, we have to make a brief digression tonescribo the concept
of not necessarily finite sums of operators, Axh@u‘nily {4} of operators
will be called summable, and the operator @il be ecalled its sum, in
symbols Z;4; = A,if ;4,2 = Az forewery vector x. The fact that a
scalar factor may be distribirted throygli “the terms of a sum, as well as
the fact that two sums may he added ‘term by term, follows from the
corresponding theorems (7.1 and’fi‘Z) from the theory of summable
families of vectors. The fact tiiat, more generally, operator multiplica-
tion is distributive with Jréspect to not necessarily finite summation
needs a little bit of proofr\.‘..’

Tueorem 1. If gad A and B are operators and if {A;} is a fomaly
of operators such thap 254; = A, then 2;4,B = AB and 2,BA; = BA.

Proof. The .Qrst assertion is easy: since Z;4;y = Ay for every
vector 3, weymby replace ¥ by Bz. The second assertion is easier: from
the validi@of the relation 2;4;5 = Ax for every vector x we conclude,
from 1%}.2,, that 2;BA;2 = Bdz for all z.

Peludnom 2. I/ P is an operator and 4f 1P,] is a family of projec-
tions’ such that ZiP; = P, then a necessary and sufficient condition that
P be o projection is that P; | Py whenever j = k, or, in differeni lan-
guage, that {P;} be an orthogonal Sfamily of projections. If this condition
i satisfied and if, for each j, the range of P; is the subspace M, , then
the range M of P 4s v ,; 90, .

Proof. I the family {P,} is orthogonal, then

P’ = (Z;P)(ZPy) = Z;ZPiPy = Z;P; =P
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and
(Pz,y) = (Z;Piz,y) = 2P, y)

= 34z, Pyy) = (&, Z;P) = (x, Py)

for every pair of vectors and y. In other words the orthogonality of
the family {P;} implies that P is idempotent and Hermitian, and hence
that P i a projection.

If, conversely, P is a projection and if z e Pk for some value of &,
then | 9 ~
Izl)? = | Pell® = (Pr, @) = ZiPs5, ) \

o
=z Pl 2 Pl = e I

Tt follows that cvery term in this chain of equations is g(qiiz}l {o every
other term. From the equality of =; || Pz || and || Ps ¥ we conclude
that P;z = 0 whenever j # &, and hence that P ;I 8 Wwhenever j > k;
the orthogonality of the family {P;} follows direm 274, From the
equality of {| = |} and | Pz || we conclude, b 953 that x e M and
hence that M, < M for all &; 1t followd(tivially that v;my < M
Since, finally, PP;z ¢ M; for every veetor Ghand every value of j, it Jol-
lowsthat Pz = =; Pz e 2,00 = Vﬁlﬁlf'or ull @, or, since I is the range
of P, that I < V;M;.

We call attention to the fast hat although the proof of Theorem 2
for finite families can be m.qde shorter than the one we presented, its
assertion is non-trivial e{%{n n that case.

§29, Products and Differences of Projections
The usefulffgt}t about products of projections lies near the surface.

THEORMNN 17 A necessary and sufficient condition that the product
P = 111 Py of two projections Py and P be & projection is that Pr <> Pa.
Ijthis eondition is satisfied and if the ranges of P, P1, and Py are n,

Jand O, respectively, then M = T n Dy
) Proof. According to 24.3, P is Hermitian i and only if P <+ Py
it is clear that if P, <> P, , then P is idempotent. We may already con-
F-ludc that P is a projection if and only if Py« Py it remains, assum-
ing that this is the case, to settle the relations among the ranges. Since
the range of a product of two eperaiors is obviously contained in the
range of the first factor, the commutativity of P: and P, implies that
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M C My and M C M, and therefore that MW C 0 My, If, on the
other hand, x ¢ 9, n Py, then Pz = Poz = x and therefore Pz = z,
g0 Lhat EUh n ’ED?;-_ c m.

Before discussing the facts about differences of projections, we find
it convenicnt to describe the algebraic formulation of the geometric
concept of one subspace containing another.

TreorEM 2. Jf M and N are subspaces with projections P and
respectively, then a necessary and sufficient condition for the validily of
all the following relations 1s the validily of any one of them. N\

N
(1) P = Q. ~\ Pt
(i) If Px | = || Qx || for every vector . \\ :
Git) m <, v
(iva) QP = P. o
(ivb) PQ = PO

Proof. If P £ Q, then || Pz || ?.’ﬁj?}, z) £ (Qr, z) = || @z |]® for

every vector z. If | Pz || £ || Qz ||for all z, and if we consider an arbi-
trary vector z in 9, then Wx| = [|[Pz|l £ |Gz £ |z

(since {| Q] < 1). Since this,implies that | Qx| = |lz]|, it follows
from 26.3 that Qz = ¢, i.ei@mt x M, and hence that M CN. ITM C N,
then Pz ¢ % and therefore”QPx = Pz for every vector x. If QP = P,
then, forming the adjoint of both sides of this relation, we see that
PQ = P.Tf PQ =P, then

Pz, &= || Pel* = || PQs ||* S || @ ||* = (@2, 2)
for all a:..\o§“’:

TH’E@};‘EM 3. A necessary and sufficient condition that the difference
P &P — Py of two projections Py and P, be o projection is that P, = Pi.
If\bh..fs con

dition i3 satisfied and if the ranges of P, P: , and Py are I,
Dty , and My respectively, then TN = My, — D, .

Proof. 1f Pis a projection, then
(-Plsz) - (Pzﬁ?,l’) = (P.','C,x) = :[Px]fz 20

for every vector z, If, conversely, P, £ P,, then PP, = P,P, = I
and thercfore

(Pl_‘lpg)z:PL—IJLPQ““PQPl‘f—PQEIJl“P?-
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Since P is obviously Hermitian, we may already conelude that P is a
projection if and only if Py £ Py it remains, sssuming that this is
the case, to settle the relations among the ranges, Since P, S Py im-
plies that P, <> 1 — P, , since Py — Py = Pi(l — P,), and since the

range of 1 — Py s M+ , it foliows from Theorem 1 that
M=ThnPy =D — M.

§30. Infima and Suprema of Projections

Not only is there a natural one-fo-one correspondence between subs
spaces and projections, but this correspondence even preseryes “the
relations of order: if M and N are subspaces with projections R-and @
respectively, then a necessary and sufficient condition th;:}{-"l” = Qis
that S0 < M. It follows (cf. §10) that the set of allmg{rajections isa
partially ordered set with the property that for any family {P;} of
projections there exists a greatest projection (to, b@:denoted by AP5)
smaller than each of them and there exists a'g@a:ﬂest projection (to be
denoted by V;P;) greater than each of thegy (For the infimum and
supremum of two projections P and @ we shall use the symbols P A €
and P v ) respectively.) In other nyor’ds the partially ordered set of
all projections is a complete lattice,m isomorphic copy of the complete
lattice of all subspaces. In vigw”éf these facts there is a systematic
geometric procedure for findifg ‘the infimum and the supremum of 2
family {7} of projectio -\if, for each j; the range of P;is M;, then
A;P; is the projection, &S}h vange N,;M; and V;P; is the projection
with range V; 0 . oo™

It 15 in general Aifficult, though not impossible, to deseribe the in-
fimum and thesl romum of a family of projections i algebralc terms.
Tn the preﬁeii:e,’ however, of suitable orthogonality, or, more generally,
commut&tii’ity assumptions, the job becomes easy.

Tﬁ}éqﬁﬁhi 1. If {P;} is an orthogonal fomily of projections, then
VJ"R ~ 3 jP i

Proof. If we knew that the family [P} were summable, the result
would be an immediate consequence of 28.2. Tnstead of proving sum-
mability, however, we find it just as easy to proceed directly. If, for
each 7, the range of P; is 9, and if the range of V;P;is M, then M =
VAR, = 3,9, ; of. 13.2. For an arbitrary vector z write 2 = © + ¥,
with ¢ ¢ 1% and y « M, and writex = ;%5 with z; ¢ ; for all j. Since
Pyz; = 8, for all § and k, it follows that Pez = z;Pix; = m and
hence that Pz = z = Z;x; = Z;P2.
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TororeM 2. If Py and P, are two commuialive projections, then
.PlAPz = PngandplvP2= P1+P2“‘ Plpg.

Proof. The assertion concerning 1 A Py i3 merely a paraphrase of
2%.1. To prove the assertion concerning P = >, + P, — PP, we
introduee the usual notation and dencte the ranges of P, Py, and P,
by 3, Py, and M. respectively. Since 2 = P, + {1 — P)P,, it fol
lows that P is a projection and that, in fact, 9 = M, v (W7 n M.
Since, similarly, P = Py(1 — ) + %, and since, therefore, S =
(M n M7) v DMe, it follows that T < M < D, v T apd Mx C
MM < My v I, . These relations imply that M = Dy v Miyand honee
that, indeed, P = P; v I, hy

Our last result along these lines shows that in thejﬁrcsbnce of com-
mutativity even the sorely missed distributive lﬁi&\\ii—i willing to put
in an appearance, !

TarorkM 3. If P is a projeciion and z}ﬂzii};} is a family of projec-
tions such that ' — P; for all §, then P A ('V}f’}) = V;{P aP;.

Proof. Since PA P; = P and P {\:P} = V,;P; for all 4, it follows
that P A P; £ P A (V,P;) for ally*and hence that V,(P a P)) <
P a {V;P;). This inequality is @ lattice-theoretie trivialily; to prove
that under our assumptions it ‘becomes an equality requires some more
work., We shall complete our Iabors by showing that whenever a vector
& belongs to the range of B A (V; /) and js at the same time orthog-
onal to the range of\(\;— (P A P;), then that vector z must be 0. In
other words we must show that if 2 = Pxr = (v,;P)x, and if
(Vi A Pz =%, then # = 0. The last-written assumption implies
{and here is &ktre we use commutativity) that P;Pz = 0 for all j.
Since Pz {2, it follows that P;x = 0, i.e. that z is orthogonal to the
range pffP_,-, for all §. Consequently # is orthogonal to the range of
V; Pysnthe only way to reconcile this with the fact that z belongs to
t@%} range i to conclude that x = 0.

$31. The Spectrum of an Operator

The spectrum of an operator 4, in symbols A(4), is the set of all
those complex numbers A for which A — X is not invertible.

The first motivation for considering spectra comes from the finite-
dimensional case. If $ is finite-dimensional, then a necessary and
sufficient condition that an operator be not invertible is the vanishing
of its determinant—s concept which makes no sense in the general,
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not necessarily finite-dimensional, case. Since the determinant of 4 — A
iz a polynomial in A, whose zeros are exactly the proper values of A,
it follows that in the finite-dimensional case the spectrum of an oper-
ator is exactly the set of its proper values.

We reeall that the concept of proper value need not be defined in
terms of determinants; according to the geometric definition, a com-
plex number A is a proper value of an operator A if there exists a non-
zero vector ¢ such that Az = Ax. Equivalently: A is & proper value of
A if there exists a unit vector & such that || Az — Az || = 0. This lash
formulation of the definition admits a reasonable generalization,, We
chall say that a complex pumber A ig an approvimale proper valué ‘of an
operator A if for every positive number & there exists a unit{yéctor z
such that || Az — Az || < ¢ it is easy to verify that af“eguivalent
requirement is that for every positive number £ there £xist a non-zero
vector x such that|| Az — A | < eflz|l. The pprovimate point
spectrum of an operator A, in symbols TI(4), is t\he et of approximate
proper values of A. \‘\ ’

Turorey 1. If A is an operalor, then T4} C ACA).

Proof. Tf x ¢ A(4), then A — ) isinvertible and consequently we
have O

Lo = 1A — A4 — 2l = et — 07 Il Az =

for every vector . This:.h}’&‘plies: that || Az — »eliz ¢ |z ||, with
e = ]jta - N7, f({\‘evéry vector z, and hence that A ¢ TI(A).

Turomsm 2. If Ay a normal operator, then TI{A) = A{4).

Proof. In wie® f Theorem 1 it is sufficient to prove that A(A) C
TM(AY. If A e’,l[{)fj, then there exists a positive real number ¢ such that
| Ay — KN% e ||y || for every veetor ¥. Qince A — X is just as normal
as A, gpd since (4 — NF = 47~ 3 it follows (cf. 25.1)
that {|'¥1*y — Ny iz ¢lly|lforally. In order to prove that A € AlA),
e, Bhat A — A is invertible, it 18 sufficient, in view of 21.3, to prove
that the range of A — A is dense, or, equivalently, that the orthogonal
complement of the range i8 ©. Clearly, however, if 2 vector y is orthog-
onal to the range of A — A, then 0 = (4 — M=, y) = (=, (A* — Ay}
for all z, and hence A%y — My = 0. Since || A*y — N hzellyll
it follows that y = 0 and the proof is complete.

According to Theoreros 1 and 2, the spectrum, at least for normal
operators, is a more or less natural object. A study of some examples,
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notably of the multiplication operaiors deseribed in §2001), sheds con-
siderably more light on the subject. By way of illustrtion we mention,
without proof, that the spectrum of the mudtiplication operator defined
by a bounded measurable Tunction /s the essontid range of h By
the essentiol range of n complex-valued measurable fineltion A on a
measure space with measure gowe mean the set of all those complex
numbers N which have the property thut w7 2 0 whenever
15 an open set confuining A, This coneepl Is nosliplit mensure-theoretie
variant of the usual concept of the range of a Tunction and s nob%o he
confused with the range of the multiplication operator delinédiby the
function; the former is a set of complex numbers and Hetiter s a
set of vectors. .

£
< 3

# {"
$32. Compuciness of Spe¢iia)
We begin with an auxiliary result on invmj@ht,y.
Tuvoresm 1. If an operator A 1s such t}a,?}{:|'| 1 — A <), then 4 15
invertible. AN

Progf. If we write||1 — A || =9\ «, so that 0 < a = 1, then

Az li= Iz = & — a9l 2 & = |I0 - A
o zlizll- A - allzll=afsl

N\ . .. .

for every vector z. It follows from 213 that it is sufficient, in order to
prove the invertibili‘gy\&f A, to show that the range M of A is qense.
in . We shall estgblish the density of 9 by proving thal if y is an
arbitrary vectopNand if § = inf {||y — x||:x ¢ M}, then 8 = 0. If
5 > 0, then tl{éﬁfexists a vector  in M such that (1 — a};y — x| <9
Since M contains both x and A(y — z), and therefore also x + Ay — ),
it followsthat
s Al — 2 - Ay — o)l =i — Ay~ =]
~ =0 - aly-zl<b
and we have reached the desired contradiction.

TuroreM 2. If A s an operator, then A{A} 4s @ compact subsel of
the complez plane; if X ¢ A(A), then | X | = || 4.

Proof. TIf 3 ¢ A(A), so that A — A, is invertible, then

1= (4 =27 =N = {4 - W74 —2) — (4 =)
= 4 = W7 =
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and consequently |[1 — (4 = A) (A — W)} < 1 whenever | A — |
14 sufficiently amull. It follows from Theorem i that (4 — No) A — N)
s jnvertible and therefore that A — A is invertible whenever | X — A ]
is suffieiently small. This implies that the complement of A(A) is an
open subset of the complex plane; it remains only to prove the second
assertion of the theorem. If [n}> |40}, then ]} 4/ || < 1 and there-
tore, again by Theorem 1, 1 — (A/) is invertible. It follows that
1 ¢ Af{4) and hence, contraposiively, that if A e A(A), then
RELESE

Q"

fven jn the absence of normality, the approximate point spectrim
¢ries hard to act like the spectrum; as a sample of such behawior we
mention that Theorem 2 remains true if A is replaced by ];[.;The.proof
is casy. If ho ¢ Ii(A), then there exists a positive DUMbErE such that
(4 — wmz) il z e for o1l unit vectors z. Conseddently if « is &
unit veetor and if [A — Mo} < £/2 , then S

I — el 2 114z = il —Ae M 2 =

6o that A ¢ TL(A). This meaps that the ccn}piément of TI{A) is open;
the rest of our assertion is an immediage‘consequence of 3L.1,

"
S N

$33. Transforms of Spectra

It is interesting to obsciVe what bappens to the spectrum of an
operator when it is subie'@ﬁed to various elementary transtormations.
{f, for instance, A andiB arc operators, and if B is invertible, it is easy
to see that A(4) = (B *AB). (In view of the identity B4 —NB =
BAB — », thpjavertibility of the right term is equivalent to the in-
vertibility of 4> 3.} In this gection we examine the behavior of the
speetrum With respeet to the formation of polynomials, inverses, and

adjoints®
m']\':‘};iﬁé;;mm 1. If A is an operator and P is a polynomaal, then
~ A(p(A)) = BAA) = [P € A4,

Proof. For any complex pumber ), there exists a polynomial ¢
such that p(\) — p(ke) = (v — Ag(d) identically in A. Tt follows thab

plA) — p(A) = {4 — Ajg(A); we assert that if hs € A(4), then B =
(A — No)g(A) is not invertible. (If it were, then we should have

A= N gBT = BB'=1=B"B
= B_)'-(A —_— M)Q(A) = B_IQ(A)(A = Rﬂ))
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Le. 4 — X would also be invertible.) Since this means that (4} — ()
18 not invertible, we have proved that pAe} ¢ A(p(A)) and hence
that p{A(A)) < A(p(A)). Suppose on the other hand that Ao e Alp(d)),
and let Ay, -+, A, be the {(not necessarily distinet) roots of the equa-
tion p(A) = Ao. It follows that p(4) — Xy = a{d - Ao (A = )
for a suitable non-zero complex number «, and hence that 4 — A must
fail to be invertible for at least one value of H1 =27 = wu Forsucha
value of 7 we have A; ¢ A(A) and p(A;) = Ay, s0 that A ¢ p(A{AY) and
therefore A(p(A)) C p(A{A)). Q.

TaroreM 2. If an operator A is tnwvertible, then A(A™) = (AN =
TN e A4 o

Proof. Observe that since saying that A is invert.ihlr:,'}s}‘tuiie same as
saying that 0 is not in A(A), the symhol {(A(A4))~? maLofs sense. The
identity A™ — A7 = (A — ANT'AT shows thatdfdh e A(4), so that
A - N is invertible, then A7 — X7 is invertiblepsaYthat A7 ¢ A4A™Y.
In other words A(A™) < (A(A))™ and ourpghedrem is half proved.
The reverse inequality follows by the clegaft™irick of upplying what
we have already proved to A7 instead of™Y

TuroreM 3. If A is an operaided then A(A*) = (AlA))* =
AF) e A(A)].

Proof. If X ¢ A(A)}, so that A — X is invertible, then 4* — A* i
invertible, and therefore A\* €\A(A*). Since this proves that A(A*) C
(A{A))* the proof may be\completed just as in Theorem 2; to obtain
the reverse inequality,it™s sufficient to apply the inequality already
proved to A* insteadef 4.

AN

334.\The Spectrum of a Hermitian Operator

If 33.3 ~i§>1pplied to a Iermitian operator, it yields the result that
the spectaim of a Hermitian operator is symmetric with respect to the
rea]é‘:éisf Actually the situation is much simpler.

TuroreM 1. If A 4s a Hermitian operator, then A(A) is a subset of
the real axis.

Proof. Tf A is not real, then, for GVery non-zero vector i,
0 <|A—=2][z]i*=|((4d — Nz, 2) - ((4 — W), z)]
=4 - Nz, z) — (&, (d —N2)| £ 2| dx — 2l 2]l
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the desired result follows from the fact {cf. 31.2) that for Hermitian
pperators the approximate point spectrum and the spectrum are the
sarmne.

Our next result is one of the most powerful tools for the study of
Hermitian operators; it asserts that the norm of such an operator can
be caleulated from its spectrum. .

TamorEM 2. If A i3 @ Hermition operator, then || Ajl = a =
sup [ A |ih e A{AY.

Proof. 'The fact that « <!l 4|, does not depend on the Hermitian
character of A; it follows from 32.2. We shall prove that equalit}
prevails by showing that || 4 [| 2 ¢ TI(A%); in view of 31.1 and 333 we
<hall then be able to conclude that 4 || 4 |] e A{4) for & suitabld choice
of the ambiguous sigh. The proof of the promised relat-iqn}‘iS\ “based on
the identity e \ 2

. . K S

A% — N |]® = A%t - 2N | Az INEON ({17,

valid (since A is Tiermitian) for all real nu;mhéré % and all vectors 2.
It fx,} 3% a sequence of unit vectors sueh-bhat | Az | — 114 |, and
ifx = || A}, then it follows from our identity that

| A, — Naa || 5 (14 |} Az 1S 2N A7 7+

= = N Az [P0

and hence that we do ind,ge’{l" have || A 1|7 ¢ (A",

One of the useful coxké(ﬁsions we ean draw from Theorem 2 is that the
spectrum of a Hermlifian operator is nob erpty. This is not a trivial
conclugion, We‘ah}iﬂ"obtain the corresponding fact for normal operators
only after the\application of & lot more relatively deep analysis. We
hereby Teport that the speetrum of an arbitrary operator is also not
empt}’;'ﬁ%&e we shall have no occasion to make use of this fact, we
shall gt enter into its proof.

”?O’St-ate our last result, an easy corollary of Theorem 2, we introduce
}Bme new notation. If A is an operator and ffiza complex-valued

function on the spectrum of 4, we shall write
N.(f) = sup {| SO\ € AN

TarorEM 3. If A is a Hermitian operator and p 15 @ real polynomial,
then || p(A)} = Na(p).
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Proof.  Applying first Theorem 2 (to p(A4) instead of A} and then
33.1, we obhtain

il p(AI] = sup | X ]:x e Alp(A))}
= sup {| A [h e p(A(4))]
= sup {| p(A)j:x e A(A}].

§35. Spectral Heuristics

We are now in a position to make a deep annlysis of the structdeedof
Hermitian and, more generally, normal operators. In u:'der,'}\lmvever,
to motivate and illusirate not only the method of proof Lufevén the
statement of the facts, it is advisable that we mube o briet” digression
and examine an analogous but more elementary theorg,

Consider the statement that a real-valued, hotutded, measurable
function f on a finite measure space X can be winl eemly approximated
by simple functions. More precisely: to any, positive number ¢ there
corresponds a finite, disjoint {amily of measwrdble sets, or, cquivalently,
a finite, digjoint family {x;} of me:J,sumble.,'c’harau:tcristic funetions, and
a finite family {A;} of real numbers, sush that { /() — 2, x| < ¢
forall ¢tin X. ’j’._

How does the usual proof of thisy theorem go? If the bounds of f are
aand B, sothate < f(f) < g forall ¢ in X, we may subdivide the interval
la, 8] into a finite, disjoint '@mily {M 3 of intervals of length less than
¢, and, for each j, we,may select a number A; in M. In the subset
FH(3 ;) of X the \::-Llues})?‘f are all within ¢ of X, , and therefore we obtain
the desired result b Setting », equal to the characteristic function of
ST 5). (Note tha¥/since the value at a point ¢ of the characteristic
function of f A7) is equal to the value of the characteristic function
of M; at j:(Q,,.\V{'é have x;() = x.;(f{t)) for all ¢) If, for any Borel set
M in the(real line, we write E(M} for the characteristic function of
the su\t;sét M) of X , our result may be expressed by writing

vV 17— Z0EQL)| < e

The expression Z;M;E(M;) looks suspiciously like the sort of sum
that occurs in various approaches Lo integration. The function £ is a
set function, a measure in some sense, which associates a certain char-
acteristic function on the space X with cach Borel set in the real li.ne.
Since, for each 7, A; is a point in the element M, of a certain partition
of the interval le, g}, the integral that appears to be lurking in the
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background has the form [ AdEQ). Iiisnota difficult task to con-
struct a theory of integration in which symbols such as [ N dE(A) make
sense, although of course our heuristic hints do not constitute such a
construction.

Proceeding {ormally, we may suMaTize our comments as follows.
The approximability of . a real-valued, bounded, measurable function
f by simple functions can be expressed Dy writing f = [N dE(X), where
7 i the somewhat peculiar, function-valued, “measure” whose value
at a Borel set M in the real line is the characteristic function of FHAMAN
The measure E has some unusual properties and reflects in some, i+
teresting ways the structure of the function f. Among its propert‘iés}ve
mention its idempotence (BN = E(M) for every Borel set M) and,
more generally, 1is multiplicativity (E(M nN) =L (MBI Yfor every
pair of Borel sets M and N). The way in which E reflects the properties
of f is illustrated by the assertion that, if M isa Borél set, a necessary
and sufficient condition for the vanishing of E(%} % that M be dis-
joint from the range of f. o 2

The analogs of bounded, real-valued, mea,sijﬁble functions in Hilbert
gpace theory are bounded, Hcrmit-iag,z Jincar transformations, i.e
Hermitian operators. Since a funetiongd the characteristic function of a
set if and only if it is idempoten‘g,ziiffs clear on algebraic grounds that
the analogs of characteristic funetions are projections. The approxi-
mability of functions by s'gr{ple functions corresponds in the analogy
to the approximability: c{t‘.ﬂermitian operators by real, finite linear
cormbinations of proje‘c%ns‘ The purpose of such an operatorial ap-
proximation theoremNs, just as in the analogous functional situation,
to provide a tool’ {or deriving and understanding the deep structural
propertics of ~Q(}Hp1ica.ted objects in termns of simple objects. For a
Hermitian@ﬁefator, just as for a real funection, we <hall be able to con-
struct ',‘fmcasure” F with the multiplicative property mentioned in
T-'halll‘eééding paragraph and to recapture the operator by means of an
im{:gréul. The measure E will reflect the propertics of the given operator
in many ways; in analogy with our remarks concerning the range of 2
function, for instance, it will be easy 1o characterize the spectrum of
the operator in terms of E.

The theory for complex—\-'alued, hounded, mesasurable functions is no
harder than for real functions. The proper analog of a complex funec-
tion turns out to be not any old operator bub a normal operator; it will
be technically convenient to derive the complex (normal) generaliza-
tion from the real (Iermitian) special case.



58 I[. THE ALGEBRA OF OPERATORS

Tt is customary to motivate the theory we intend to develop not by
such analytic considerations as we have indicated, but by reference to
the algebraic facts concerning operators on finite-dimensionnl spaces.
Tt is a good idea to keep both in mind, and, specifically, the reader ig
advised to think through the relation between our past and future
comments on the one hand and the familiar reduction of a Iermitian
matrix to diagonal form on the other hand.

§36. Spectral Measures . \
If X is a set with a specified Boolean s-algebra S of subscti M spectral
; . . Lo, N\
measure in X is a funetion B whose domain is S and whose values are
idempotent, Hermitian operators (projections) ond "9, such ihat
B(X) = 1 and such that B(U, M.} = Z.E(M,) Whenever (M.} is a
disjoint sequence of sets in 8. A set X with a spuciﬁ&i RBoolean o-nlgebra
S of subsets ig usually called a measurable Space and is denoted by
(X, 8); the sets belonging to S are calle ARe “measurable subsets of X.
A typical example of a spectral measuré¥ds)obtained by letling X be not
only a measurable space but a measyre.8pace with measure p, consider-
ing the Hilbert space %y} in the.:r:’cﬂe of ©, and writing KM = xuf
whenever M ¢ S and [ e () ¢Where x,, denotes, of course, the char-
acteristic function of the set M. J* The standard techniques of elementary
measure theory show thatdf F is a spectral measure, then £{0) = 0
and ¥ is finitely additiveYte. E(U,M ) = Z;E(M ;) whenever [M;lisa
finite disjoint fami}y\)\f measurable sets).

TuEOREM 1. AIFF is a finitely additive, projection-valued set function
on the class of all measurable subsels of a measurable space (in particw-
lar if E ig.q’;%)ectmi measure), then E is monotone and subtractive, v.t. if
M and,Q(afe inSand M C N, then E(M) £ E(N) and E(N — M) =
E(N)}.:— E(M).

m: ’:R&'bof. Since B(N) = B(M) + E(N — M), the fact that I is sub-
\tractive is trivial; monotony follows from 29.3.

TeroreM 2. If £ 1s a finitely additive, projection-valued sct Sunction
on the class S of all measurable subsets of a measurable space (in portiel-

lar if B 4s.a spectral measure), then E is modular and multiplicative, i..
if M and N are in S, then

EMuN)+ E(MaoN) = EM + EN)
andd

E(M a N) = BE{MYE(N).
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Proof. 1f we add E(M a N) to both sides of the equation
E(M o N) = B — Ny + EQMn M) + E(N — D),
we obtain
E(MuNYy - E(Mn NY = (E(M — N)+ E(Mn N
1 (BN — M) + EMnN) = E(MY + E(N).

This already proves modularity. Since, by Theorem 1, E(M n N} 2
B(M) £ E(M v Ny, it follows that EGMEM aN) = E(M n N) and~
E(MYE(M u N) = E(3). Tf, therefore, we multiply both sides of the
modular equation by E(M), we obtain EQD + EMa Ny = BB
B(M) E(N), and this proves that [ is multiplicative. O

We remark that the multiplicative property of B imp}igsf i’ partieu-
lar that E(3) <+ E(N) whenever M and N are in 5. AN\

TueonkMm 3. A projeciion-vaiued funciton B qn\the class S of meas-
wrable subsels of @ measurable space Xisa spe{:t{il‘ casure if and only if

@ E(X) = 1{ ‘
and N

(1) for each pair of veclors @ andi’g,rfthe complex-valued sel function p

~

defined for every M in S by )" = (B(M)z, ¥} 5 countably additive.

Proof. I K2 a spectnal"hleasure, then (1) holds by definition and
{ii) follows from the faﬁzi\U.S) that an inner product cne factor of
which is un infinite s@n may be formed term by term. Suppose, con-
versely, that (1) ande @i) hold. 1i M and N are disjoint measurable sets,
then the ident-i“@\ "

EQ u M) = (B, y) + EEm ) = (EQD + BV Y

proves-thiat £(M u N) = E(M) + KN, ic. that E is finitely additive
(Kagthérefom multiplicative). If, similarly, (M.} =2 disjoint sequence
of Measurable sets with U, M. = M, it s tempting to argue that

(E(M)z, y) = SAEM)T y) = (BB, y)

for all z and y, and henee that E(My = 5, E(M.). The only thing wrong
with this argument is that . B(M) need not make sense; we shall
finish the proof by showing that it does. The multiplicativity of ﬁE'
implies that {E(M.)} is an orthogonal sequence of projections an

hence that {E{Ma.)z} is an orthogonal sequence of vectors for every &
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Since
| B0 | = ZlB(M)z, 2) = (B, @) = || E(Dz I

it follows that the sequence {E(M.)x} is summable. 1f , B{M e = Ax,
then it is clear that A is a linear transformation of $ into itself; the
chain of equations used to prove the existence of A implics also Lhat A
is bounded (and, in fact, that || 4 {[ < 1).
§37. Spectral Integrals \

Throughout this section we shall work with an m‘l)ii..mr}"b;ﬁ fixed
measurable space (X, 8); the expression Hgpectral mcusul'g‘,”\:\\xill always
refer to a spectral measure in X. It will be convenicnt'té Use also the
symbol B for the class of all complex-valued, bafdded, measurable
functions on X, and to write N{f) = sup {| f()\j‘];:\h e X! whenever
Je®, O

TugoreM 1. If K @8 a speclral -measum”a'.f:'d\i [ e B, then there exists
@ unique operaior A such that (Az, y) =) ANz, 1) for every puir
of vectors © and y; the dependence of A gu fand £ will be denoted by writing
A= [FdB = [ f0AEQN). SV

Proof. The boundedness oft f implies that the integral o(z, Y =
[ f3) d(E(A)z, y) may be £qm€d for every pair of vectors x and ¥; ap
obvious computation shdws that ¢ is a bilinear functional. Since
Loz, ) < [1FEREMN=]|® £ NG|z ]i® it follows, by 182,
that  is bounded nd hence, by 22.1, that there does indeed exist &
unique operator §a4isfying the conditions required of 4.

TIEOREM 2If E is a spectral measure, if f and g are tn B, and of &
isa comp]{g:}iﬁmbe-r, then

s \ -
I (o) dE = of fdE, [ (f+¢)dE = [fdE + [gdE,
wid)

N/ [ frdB = (] faE)*
Proof. The proofs of all three assertions are similar and almost
automatic. To prove, for instance, the last one, we write 4 = [ fdE

and B = [ M™dE, and we observe that the relations
(=, By) = (By, =)* = (f F*Q) d(BEQN)y, )*
= [ i d(z, EQy) = [ 70) d(EMN=, y) = (Az, ¥)

are valid for every pair of vectors x and y.
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Tugorem 3. If Eisa spectral measure and if § and g are tn B, then
(f faB)( ¢dm) = [ fgdE.

Proof. We write A = [fdE and B = f g dE. If the (complex) meas-
e u 0 X is defined for cvery et M in S by u(M) = (E(M)Bz, 0,
where z and y aré any fixed vectors, then

W) = (Be, E(M)y) = [ g0y dENz, EQDY) = [ ¢ AEGDER, 1)
— [ g0 dEM n N y) = {0 g0 AENZ, ¥)
for every M m 8. It follows that "\

N

(ABz, 3} = A%y, Be)* = (f 00 dENY, Be)* ¢O)

'\

= ([ ) dly, EQ)BNT = § 100 dBEMBE, ¥ N
= ffN sy =[] ()})Q@')d(E(?\)z,y)
and hence that 4B = { fgdl. \%

It follows from the preceding yesults that if A7 jgva spectral measure,
then [dEQ) = EX) =1 and, more gepefally, [ Xy V) AEQ) =
fudB(N) = E(M) for every Min S (Theoier’n 1); if f and g are in B,
then [ fdE < [gdE (Theorem 3); and §hf ¢ B, then [ fdE s normal
(Theorem 2 and the commutativitg esult just mentioned). To state
our last result concerning the Eklgébraic vehavior of spectral integrals,
we introduce & convenient n tabion: if B isa spectral measure asnd B
is an operator, we shall write) <« B for the assertion that ¥ (M) B
for all M in 8. We remarky 10T example, that if f ¢ 5, then E « § fdE.

Tarorem 4. TAE sa spectral measure, if B is on operaior such that
E o B, and if f,e8, then § fdb < B.

Proof. IE\ET&E = A, then

N\

(A8gy y) = [ 0 dEN Bz, ¥) = [ $) d(BEQT ¥)

N\

QY - made By = (Ax, By = (BAz ¥)

for every pair of vectors ¥ and ¥

§38. Regular Spectral Measures

Throughout this section we shall assume that X is a locally compack
Hausdorff space and that S is the c-algebra of all Borel sets I X; except
for this specialization, W€ continue to follow the conventions of the
preceding section.
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A spectral measure E is reqular if E(M,) = vI(M) for every Borel
set. My, where the supremum is extended over all compact sets M
contained in M,. The spectrum of a spectral measure K, in symbols
A(E), is the complement in X of the union of all those open sets M for
which E(M) = 0. A spectral measure is compact i its speetrum is
compact. We observe, concerning these definitions, that they cannot
even be formulated, let alone exemplified, if X 18 not a topologieal
space. On the other hand as soon as X is a topological space these
definitions make sense; we restrict attention to the cuse of ideally
compact Hausdorff spaces mainly because that is the limit of the gener-
ality we need for any of our applications. A/

TueoreM 1. If E s a reqular speciral measure and ,.-i.';,=\ A(E), then
A is a closed set such that E{X — A) = 0 (and thr:re_,{of({ {AYy = 1)

Proof. Since X — A is, by definition, a unieiy of open sets, A Is
closed. To prove that E(X — A) = 0, it is, in Wiew of regulanty, suffi-
cient to prove that E(M) = 0 whenever, d¥fis a compact subset of
X — A. The definition of the spectrumnof¥¢ implies that every point
of X — A, and therefore in particular{gvery point of A, is contained
in an open set on which the value of\F vanishes. Since M is compact,
M may be covered by a finite numbér of such open sets, and it follows
indeed that E(M) = 0. N\

It is frequently convenmfent to consider spectral integrals such as
§ fO\ dEQ) even if thé gomplex-valued measurable function f 18 not
bounded; the thcory\@} such integrals remains simple as long as we
assume that f is, 80,40 speak, bounded with respect to the regular spee-
tral measure HNWore precisely what is needed is that f be hounded on
the spectrund Aof E. If that is the case we define [ f dE tomean [, fdE =
§ xxJ dEjJo/view of Theorem 1 this definition will lead to a consistent
theory\Another way of accomplishing the same purpose is to replace
the-§pace X by the subset A and the spectral measure ¥ in X by the

(vgetral measure in A obtained by restricting the domain of definition
of E to Borel subsetsfof A only. In connection with this circle of ideas
it is natural fo write Wz(f) = sup {|fOOL:x ¢« A(E)} whenever £ is a

spectral measure and f is a complex-valued measurable function bounded
on A{E).

TreorEM 2. If E is o compact and regular spectral measure with
spectrum A and if f is @ complez-valued continuous function on X, then

N fFdE ] = Na(f).
Proof. We write { fdE = A, and we assume first that f is real.
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gince it follows from the preceding section that A is Hermitian, we
have
1Al = sup {[(Az, D)= = 1}.
Qince, howevet,
Az, ) = [a] fO i BQ)z 12 s N lh=
[or every vector @, 1t follows that || A 1] £ N(f).

N = 0, let e e o positive number such that ¢ < N&(f). We
may and do assUNe, without any loss of generality, that N.{f) =X
sup {f)A € AL 1E Moo= Info0 > Nel) — ¢}, then 3 is an open
et and M n A == 031t follows that B{M) #= 0. If 1 is a non-zeroe ,vecibr
s the range of K(3M), then E(X — Mz = EX)e — E(Mz = W and
therefore o\ R
(e, 2| = 1f J0) B, @), = | LSO AN BN )

> (NG — ol 5D
It follows that || A [j = N:(f) — & for eveliy"ﬁoéitive number ¢ and
hence that || 4 1] = Ns()- O
Tf f is complex, then, by 22.4, o
AL = | A*A || = 1 7+ BN Bl = LS ST I
Simce f*f = | f |7 is real, we h?{'e

| 41l® = sup {1)«@1'2’:)\ e Al = Na(i 71D = NN

fl

§39. Rc.;l ‘and Complex Speetral Measures

A spectral eabure defined on the class of all Borel sets of the com-
plex planc ig™alled a complex spectral measure- Our frst result is that
the resultgrof the preceding section are applicable to complex spectral
mesguges)

4

T}EOREM 1. Euery complex spectral measure is regular.

Progf. The proof of this theorem may be carried out by imitating
the proof of the corresponding fact for ordmary pumerical Measures.
The main tool of that proof is the separability of the complex plane.
As a compromise between reproducing here all the details of 2 standard
technique on the one hand and saying that the proof is left as an exer-
cise for the reader on the other hand, we shall reduce the theorem as
stated to the numerical case. Suppose then that E is a complex spectral
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measure and that M, is a Borel sef in the complex planc. If A 18 a com-
pact subset of My, then E(My) = E(M) and consequently

EOM) = VE(M).

We must show that if a vector z in the range of E(Afy) is orthogonal to
the range of E{M) for every compact subscet M ool A, then 5 =10,
If, however, p(M) = (B(M)z, z) for every Borel set A7, then, by fhe
regularity of numerical measurcs, (Mo} = sup (M), where, again,
the supremum is extended over all compact sihsets of 3y, Sinece, by
hypothesis, u(M) = 0 for cach such compact set, it. follows thaP

w(Me) = 0 R\,

£\
and hence that z = E(Mox = 0.

N
7%,
L 3

Our next result is the reason and justification for ua{n\g the word “spec-
frum” in connection with spectral measures. )

Tuzorem 2. If E is a compact, comple‘x\\specimi moasure and if
A = [ XdEQ), then A(E) = A(A). R

Proof. If X ¢ A(E), then there is anibpxen sel M such that xe e M
and E(M) = 0. i M’ is the comp}pinent of M and § is the distance
between X, and M’ then RN

4z — Nz = (4 — 3" ¥ ~ 2z, 2)

: N = T = MO — M) AEN )

for every vector . Sm}e\E (M} = 0, it follows that
| Az 0GP = [ A — N PdENT, ) 2 & [z |1

for all 2 and,\ﬁéﬁ’cé that

\\ o€ TI(A) = A(A).
If, :cqﬁi}ersely, o ¢ A(E), then we have E(M) » 0 for every open set
\@ \¢ntaining X . Hence if & is any positive number and

M o= (A — Ao < 8},

then the range of E{(M) contains scme unit vector z. Since, arguing a8
before, || Az — Aoz |[* = [u |} = N [d(ENz, o) < &, it follows that
e A(A),

) A_spectral messure defined on the class of all Borel sets of the real
line is called a real spectral measure. It follows from Theorem 1 {ef. 38.1}
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that a complex gpectral measure whose speefrum is contained in the
real axis may be viewed as a real spectral measure; conversely, of course,
every real spectral measure may be viewed as a complex gpectral meas-
ure whose spectrum .5 contained in the real axis. Consequently any
result valid for all complex spectral measures is valid for all real spectral
measures as well.

§40. Complex Spectral Integrals

Tgeorem 1. If Ei and E» are compaci, complex spectral Measures,
such that [ NAE((Z) = I AdE:(\), then B =E.

Proof. Let 8(3) and ~(\) be the real and imaginary part respecti:vely
of the complex number A. If for an arbitrary but fixed vector zwe write
w(M) = (F(M)z, z) and p(M) = (Eo(M)x, ), then, singe, and g2
are real (and in fact non-negative), it follows that [ gdeic= [ Bdu and
Jydp = [vduz. By polarization we obtain the result that

{BdE, = | BdEe 7 \d
and o\
[ydB = [vaE
The additive and multiplicative pljo];igx;ﬁes of spectral integrals imply
that if p is any real polynomial oo variables, then

T D8N, YOV AR = [ pEN 7N B Y
for every pair of vect-ori\ﬁ‘: and y. It follows that
(M), ) = (B0 )
for every Boreltsicla’\j‘vf and all z and y, and consequently B = E:.

Theorem\{“f}sﬂjrs that a compact, complex gpectral measure is uniguely
determipgﬁ\by one of the simplest spectral integrals that can be formed,
ie. the-integral of the function f defined for every complex number
MBI TR = A, Since it is true (cf. our heuristic promise in §35 and its
flmillment in §44) that every normal operator has the form [ MEQ)
for a suitable compact, complex spectral measure B, Theorem 1 is the
assertion that the representation of a normal operator by such an integral

is unique.
Tamorew 2. If B is o compact, complex spectral measure and if B is

an operator such that both fNdE(N) and f)\*dE(h) commute with B, ther
F < B,
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Proof. We use the notation established in the proof of Theorem 1,
Since A) = %O\ + 3) and v(A) = é—% X\ — \*}, our assurnptions imply
that if p is any real polynomial in two variables and if

A = [p(B(), v B,
then B « A. Ii follows that
[ p(B0), v d(EN, BY) = (dz, BYy) = (4Bz, )
= [ p(BON, v(\) d(EOEBZy)

for every pair of vectors x and y. Since we may infer that  +Cy
A\
(BE(M)z, y) = (B(M)z, B*y) = (E(M)Bz, )

holds identically in the Borel set M and the vectors x:';md y, the proof
is complete. NS

Theorems 1 and 2 are of course true for zehl spectral measures in
particular; the proofs for this special cas@'\ime slightly easier than the
ones we presented. We observe also thatgyen the statement of Theorem
2 becomes simpler if the spectral meg,s,u're'E is real, since in that case the
vanishing of ¥ on the complement, 0f \the real axis implics that

FAAEQ) = [ NdEQ).

In other words if £ is aqumpact, real speetral measure and if B is an
operator such that JAdEQ) <> B, then B« B. It iz a remarkable anc
useful fact that this Qbrengt-hened version of Theorem 2 is true for com
plex spectral meagures also, but it will take us all the work of the follow
ing two sectioniyto prove that.

We end.@g.}\"aection by reminding the reader of the existonce of 87.4
That theorém shows that whenever we have accumulated enough as
sumPﬁ:ions to justify the conclusion of Theorem 2, then we may als

wcp:ighjde that [ fdE < B for every complex-valued, measurable functiol
P ¥hich is bounded on the entire complex plane, or at any rate on th
gpectrum of the speetral measure E.

§41. Deseription of the Speciral Subspaces

TasoreM 1. If A is a normal operator and if § = F(A) is the sel
all. vectors © such that || A" || < ||z || for every positive integer ™, e

& is @ subspace. If B is an operator such that A < B, then § s Fnparie
under B,
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Proof. et 0 be the set of all those vectors » for which the sequence
fi| A"z |}} is bounded. If z and y are in 9% and if « and 8 are complex
numbers, then the relation

a4 ex + B {l = | |- A% + | 8] 4™y |},

valid for every positive integer n, shows that ar + Sy e M. If z e M,
then the relation |[A"Bz || = || BA"z{| £ || B||-|| A"z]|, valid for
every positive integer n, shows that Bz ¢ Y. Tn other words 9 is a
linear manifold and M is invariant under B; it is clear that § < M. A
is not at all obvious that D¢ is a subspace (i.e. that M is closed), ahd,

although the fact that { is closed is casy to see, it is not at all obvius
that § is a linear manifold nor that § has the desired mvariance Droperty.

All these difficulties can be cleared up in one fell swoop by ,shov; ing that Y el

§ = M; that is what we propose to do. It is sufficient, toyprove that if
a vector z is such that || A™x | > «|| z || for some pg\ltwe integer m
and for some number «, a« > 1, then the sequened't|| 4"z |} is not
bounded. But this is easy: an mductlve rf-pe’mtlmbof the argument used

to prove the chain of relations ~\
llalf <fA™z | = (4™, 472) = ((A"')*Amx, x)
= (A”I*'A”'x b df = {l 4™ |1l ]

shows that || A" "z || > o j[xH for every positive integer n. (The
normality of 4 was used, via 2&1 in thestep || (A™P*4™z [| = {| 4™ [} )

Suppose now that F i s(eompact complex spectral measure and that
4 1s the normal operatx [ AdB(Q\). For each complex number A and
each positive real number ¢ we shall write §(, r) for the subspace

%( (4 - }\)) z{ssomated with the nermal operator = (4 - A) in the

manner desc\\qbed by Theorem 1. More exphc:tly %(}\ ¢} is the set
(subspaceh \of all vectors z such that || (4 — A)"z || £ &" |} = || for every
pomtwe\mteger n; roughly speaking a vector ¢ In %()\ £) may be de-
bof s an approximate proper veetor with proper value A and degree
Of approximation £, (Use of this language is not to be confused, how-
ever, with the technical term defined in §31.) For every set M of corn-
plex numbers and for every positive real number &, we shall write
TM, &) = ViuFO, o), and FM) = NGB, ¢). As the final piece of
new notation we introduce G(M) for the range of E{M) whenever 3
is & Borel subset of the complex plane. In the next section we shall show
that if M is compact, then F(M) = G{M).
The point of our procedure is this. We are trying to prove that when-
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Proof. We use the notation established in the proof of Theorem 1.
1 . .
Since S{A) = %O\ 4 ¥*) and y(A) = 5 (A — X*), our assumptions imply
that if p is any real polynomial in two variables and if

A = [ p(BQ), yON))dEQ),
then B < A. It follows that

[ p(80), YO d(EMT, BYy) = (Az, BYy) = (ABx, y) '
— J (B0, 7)) (BB 1)

for every pair of vectors # and y. Since we may infer that & \)
(BE(M)s, §) = (B(M)a, B'y) = EAOBpY)

holds identically in the Borel set M and the veetqgs\x’}md y, the proof
is complete. 8

Theorems 1 and 2 are of course true ff],lt\}(?:zj,l spectral mensures in
particular; the proofs for this special case ate slightly easter ihan the
ones we presented. We observe also that ¢¥en the statement of Theorem
2 becomes simpler if the spectral mpasuﬂa I is real since in that case the
vanishing of K on the complemenjﬁéf’the real axis implies that

[AIER) = [N dEQ).

In other words if £ is a~compact, real spectral measure and if B is an
operator such that f\{"dE()\) < B, then E — B. It is & remarkable and
useful fact that this.strengthened version of Theorem 2 is true for com-
plex spectral meaiures also, but it will take us all the work of the follow-
ing two secfigns'to prove that.

We end"this section by reminding the reader of the existence of 37.4.
That,'\ wemn shows that whenever we have accumulated enough as-
su;Pptions to justify the conclusion of Theorem 2, then we may also

~copelude that [ fdE < B for every complex-valued, measurable function
\f‘ which i8 bounded on the entire complex plane, or at any rate on the
spectrum of the spectral measure E.

§41. Description of the Spectral Subspaces

Treorem 1. If A is a normal operator and if § = F(A) s the set of
all vectors © such that || A"z || < ||z || for every positive integer ™ then

§ 4s a subspace. If B is an operator such that A <> B, then § inpariont
under B,



§41. DESCRIPTION OF THE SPECTRAL BUBSPACES 67'

Proof. Let M be the set of all those vectors z for which the sequence
(A% iy is bounded. If = and ¥ are in I and if « and B are complex
numbers, then the relation

W AMax + BN 1 2 MBS ERFIRERAE

valid for every positive integer 7, shows that ax + By e M. 1z e o,
then the relation i} A"Bz || = || BA™=z ]| = B4, valid for
every positive integer #, shows that Bz ¢ Pt In other words I is &
linear manifold and MM is invariant under B; it is clear that § C M. 1t
is not at all obvious that SN is a subspace (Le. that M is closed) and,
although the fact that § is closed is easy to see, it is not at all obvious
that § is a Hinear manifold nor that § has the desired invariance'\proﬁert,y.

All these difficulties can be cleared up in one feil swoop by showing that P

% = ; that is what we propose to do. It is sufficient 4D, prove that if
s vector @ is such that A"zl > o || = |} for some positive integer m
and for some number o, o > 1, then the sequehce Jl A" ]} is not
bounded. But this is easy: an inductive repet-i‘t,i.oh~ of the argument used
to prove the chain of relations 2\ N

S 3

A

Al < APl = (A%, A7) g ATA"S D |
< || @&l el = (147 il

shows that || A7z !l > o }i S for every positive integer M (The
normality of A was used, vigh2s.1, in the step || (4™)*4"z b= A7zl

Suppose now that E\Q\a compact, complex spectral measure and that
A is the normal ggedator f AdE(x). For each complex number A and
each positive realénumber & We chall write F(», &) for the subspace

1 A 1 .
§ (; (A — X)\Yassociated with the normal operator 7 (A — ) in the
manne}"z‘ééscribed by Theorem 1. More explicitly §®, g) is the seb

(ﬁubsfg&b'e) of all vectors x such that }j (4 — Nz || £ " || % | for every
ostive integer n; roughly speaking & vector x in [k, &) may be de-
scfibed as an approgimate proper vector with proper value A and degree
of approximation . (Use of this language is not to be confused, how-
ever, with the technical term defined in §31.) For every set M of com-
plex numbers gnd for every positive real number & W€ shall write
FOL, &) = Va5, &), and FM) = (.5, o). As the final plece of
new notation we introduce E(M) for the range of E{M) whenever M
is a Borel subset of the complex plane. In the next section we shall show
that if M is compact, then KM = E(M).

The point of our procedure is this. We are trying to prove that when-
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ever A commutes with an operator B, then ¥ < B. For this purpose
we need a direct, geometric characterization of G(M) in terms of 4,
and that is exactly what the equation F(M ) = G{M) (whenever it is
valid) gives us. Considerafion of the subspaces §(M) is quite natural
when they are viewed from the proper value point of view mentioned
in the preceding paragraph.

We conclude this section by borrowing the already announced result
of the next section and, on the basis of that loan, proving the main
commutativity theorem. Q)

TazoreM 2. If E is a compact, complex speetral measure and if B
is an operator such that [ NdE(\) < B, then 2 & B. PR

Proof. Using the notation established above, we bogjm by ohserving
that, according to Theorem 1, §(A, &) is invariant und(r B for all A
and £. Since the span and the intersection of mva.LItmt subspaces are
themselves invariant, it follows that the subspagc %(M) is invariant
under B for every set M of complex numbers\If M is compact, then
(by §42) we may conclude that (M) is m\anant under £. The regu-
larity of E shows then that E{}{) is lnval’lant under B for cvery Borel
set M. Since if M is a Borel sef, then 8Q eits complement 37, and since
EM") = (G(M), it follows that EE{M) reduces B for every Borel set
M, and this is a paraphrase of wl@t we have promised to prove.

§42. Characteytiz}tion of the Spectral Subspaces

We continue to use the éymbols E, 4, & and §, in the sense in which
they were defined j in, bhe preceding section.

TatorEM 1. T}' M is a0 Borel subset of the complex plane, then
'“\" E(M) < F(M).

P, ‘-"Oﬂf \Let e be a fixed positive number and let {3} be a disjoint,
countable family of non-empty Borel sets of diameter less than & such

4?&‘1; U;M; = M. For each index j, let A; be a complex number in M.
r e (M) and if z; = E(M )z, then

1A =2 " =[] — A" [P BN, 2)

for all j and n. Since E(M})z; = 0 (where M is the complement of
M ), it follows that

1A =25 1 = g | 0 = A" dEQ)z;, v < & {1
for all j and n, and hence that z; ¢ §(;, €) for all 7. Since



§43. THR SPECTRAL THEOREM FOR HERMITIAN OPEBRATORS 69

i, 0 CHWM, e

and since = E(Mx = Z;E(Mpz = Zi%;, it follows that x € §(M, €).
The arbitrariness of ¢ implies that z € ${M) and hence that

&M < F@AD.

Tugorum 2. If M is a compact subset of the complex plane, then

Proof. et M’ be the complement of 3, and let N be any compagh,
subset of M’. Tf & is the distance between the two compact sets M and W,
then 3 > 0 and consequently we may find a number £ such thati)y

N\

L 3 N

0 < e <d

I 2 ¢ M and if = € 30ho, ), then || (4 — 2z || £ £ I for every
ny if on the other hand % € E(N?}, then e

(4 =2zl = [l O = 20" [ aBR® 2 871 II*

It follows thut no vector other than O ca, ii,él\ong to both FXo, €) and
G, ie. that Fo, )0 BN) = £. Werpropese to show that much
more i true; we shall, in fact, prove’ that §(he, &) L G(N). Since
E(N} < 4, it follows from 41.1 tha*ﬂ%(lg, ¢) is invariant under B(N).
Since a projection is a Hermilian operator, we may conclude that
%, £) reduces E(N), or, &quivalently, that the projection F(o, &)
with range §(ho, £} co r{ut‘es with E(N). We know therefore that the
product: F{Ao , £) E(N ),]i-s\he projection with range §e, €) N E(N), and
hence that F(ho, &9¢N) = 0. This, however, js what we promised:
T, &) 18 indeed sorthogonal to &(N). The arbitrariness of Ao in M
mplics that B(AF, &) 1 G(V) and hence that F(AO) L G(N). To sum
up: if  isd\dbmpact subset of M’, then %(M) L G(N). The regularity
of E implits that F(M) L S = (GM ¥~ , and hence that

~O S(M) < G,

4

a8 aggerted.

§43. The Spectral Theorem for Hermitian Operators

It is high time to prove that in the coursc of the last several sections
we have not heen operating in & vacuum. The following theorem settles
all such doubts for Hermitian operators.

Prmorem 1. If A is a Hermitian operalor, then there exists a (neces-
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sarily real and necessarily unigue) compuact, complex speetral measure F,
called the speciral measure of A, such that A = [N dE(N).

Proof. Let z and y be any two fixed vectors and write
Lp) = (p(d)e, y)

for every real polynomial p. It follows from 3.3 that
|L(p) | < Nulpy-lLzii-'yl

and hence that, with respect fo the norm N, L is o bounded lidtear
functional of its argument. There exists consequently a nnique, éomiplex
measure p in the compact set A{4) such that (p(A)x, u) = fp()\) du(h)
for every rteal polynomial p and such that | (M) | = &y ]| for
every Borel set M. We shall find it convenient to indicate tln e spendence
of g on x and y by writing gz, ¥} instead of (U‘)y'\

Using the uniqueness of g, we may proceed by Sh‘;’iip;hli'm‘ward Com-
putations to prove that uy i3 a symmetrie, bi) iQu’n functional for each
Borel set M. The proof of the fact that g e .1\ wddiiive in its first argu-
ment runs, for instance, as follows: :\

J ) dinlm + 22, 1) = (p(A)(m + ~s{) M) = (p(Mar, ) + p{d)xe, y)

I ?()\) dunlz, ¥) + [ o) dulze, 9).

Since, in virtue of the relatién ] pM(x D=z iyl valid for all
M, z, and y, the bilinear iur%tlonals wy are bounded, it follows that for
each M there existy d\nnique Hermitian operator K{1I) such that
pul@, ¥) = (B(M)z,gpfor all x and y. Consideration of the polynomials
po and py , deﬁngd}by pofd) = 1 and py(N) = A, implies that

SO TAENL, ) = (EX)zy) = (50
and A'\ -
JAEQN, ¥) = (Az, y)

%aﬂ x and y. In view of 36.3, all that remains in order to complete
proof of the theorem is to establish that the function £ is projection-
valued; we shall do this by proving that & is multiplicative.

For any fixed pair of vectors z and y and for any real polynomial 4,
we introduce the auxiliary complex measure » defined for every Borel
set M by »(M) = [, q(\) d(EMN)z, o). T p is any real polynomial, then

Ip(Wdv(y)y = I 2N dENT, ¥) = (p(d)g(d)e, y)

= (A, ¢(AYy) = [ p(n) dENz, (W)
and therefore
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M) = axs ) dEX), ) = (B(Mz, ¢ L))
— (AEWM )z, y) = [ ) dAENEM)z, 3)
for every Borel set M. Qince g is arbitrary, it follows that
(KM a Nz y) = | s ALENz, ¢)
= [xxu®) dBEN, y) = (EW)EM)2, v)

for every Borel set N, and hence that B(M n N) = E(ME(N). The
proof of the speetral theorem for Termitian operators is thereby.cgii-
plete. .
Although our proof of this theorem appears at a rather lam{ é?i.”a\ge of
ihe development of the theory, the proof does not, a8 a matter of faet,
use mueh of that theory. In addition to the very elen:géfit-ﬁ of Hilbert
space geometry, and the external analytic crutch of #acasure theory,
the proof relies on the connection between bilinear functionals and
operators and on the connection between the uorm and the spectrum
of a Hermitian operater. We recall that t.}lg’\ﬁra}n of these connections is
based on tlie tepresentation of linear fudetionals by vectors, and that
the second one (which is the one t}}atwi'eally exploits the Hermitian
character of &) involves the elemei;ﬁaﬁry properties of the concepts of
gpectrum and approximate poitib sspectrum, Almost none of the in-
formation that we have seciitulated about spectral measures Wwas
needed, aud only superficial fhut apparently unavoidable) use was made
of the facl that A 13 I@ri’nit-ian; we did not even need to know the
slightly tricky rnlati;\’, Al = sup {] (A2, #) i:||zl] = L}. The proof
applies, of eourseeote’ the spocial case in which © is finite-dimensional.
In view of the 1(?1 of wpparently formidable machinery that we have
used, thiz lasf/comment might appear silly—-the spectral theorem for
the finitg«difficnsional cuse ig, alter all, quite near the surface. A closer
eXEl-IIliPl::tj,iOll of the facts shows howoever that, since the meagure-theoretic
amJ@QLLus becomes almost vacuous in the finile case, our procedure
Yields a rather reasonable prool even there. The reader who is not quite
clear as to cxactly which concepts are needed exactly where would do
well to rotrace our sleps and examine the extent to which they become
simplificd in the prosence of finito dimensionality.

§44. The Spectral Theorem for Normal Operators
Tuworesm 1. If A is a normal operalor, then (here G2l @ (necessarsy
unique) compacl, complex spectral neasure B, called the speciral measure
of A, such that A = J ME(QA).
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Proof. If A; and A, are the real and imaginary parts of A respee-
tively, i.e. if A; and A are Hermitian operators such that

A=A1+'if12:

then, by the theorem of the preceding gection, there cxist two real,
compact spectral measures Fy and B such that

A, = .r )\dEIU\)
and Q.
As = [ adEN). N
A
Tt will be convenient to regard the complex plane as Ug\Eartesian
product of the real and the imaginary axcs. In accordahec with this
view, we shall use the term recfangle to stand for the @nptesian product
M, X M, of & Borel subset Af, of the real axis an‘dfa.\l%(_}rel subset M.
of the imaginary axis. Since the fact that 4 is novmal implies that all
operators in sight (and in particular Ef(Madend F.(3M.)) commute
with cach other, it follows that J () Fof3sY is o projection. The re-
mainder of our discussion will be devotethto sketching the proof of the
fact that there exists a (necessarily celppact) complex spectrul measure
Esuchthatif M = M; X M. is a rectabgle, then (M) = E(M)) Ea(My).
We leave it 1o the reader to verly that a spectral measure J7 with this
property also has the pmpg.rtj'tha.t FNAEQ) = Ay + s = A3 the
verification depends on théJact that if a function on & product space
iz independent of one \ﬁ;s two possible arguments, then its integral can
be evaluated by an ihtegration on the other one of the two factor spaces.
For any fixed, ¥otor « let 4 be the function of rectangles defined by
RMy X My) sNE(M) Ex(M2)z, x). The properties of the spectral meas-
ures E, apd“Hyimply that & is non-negative, finitely additive, and con-
t-inuous?%rﬁ below in the sense that its value on the union of an in-
creagipg, sequence of rectangles is the limit of its values on the terms
of the sequence. It follows that 4 can be extended to a measure on the
“elass of all Borel sets in the complex plane. It is convenient to indicate
the dependence of the extended # on z by denoting its value on aiy
Borel set M by fulz).

For every Borel set M and for every pair of vectors x und y we write
une, v) = Balie + 1) — ful3e — ) + iBu(i + @)
— {3 - WD

We assert that py is, {or each fixed Borel set M, a synunetrie bilineat
functional. This assertion is proved by noting that (i) it i3 true if M
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is a rectangle, and (ii) the class of all sets for which it is true is closed
under the formation of complements and countable unions. Since

| paelz, %) | = | () | = hE “2

whenever M is a rectangle, it follows that, for each Borel set M, the
bilinear functional pa 18 bounded (and has, in fact, a norm not exceeding
1). We are almost al the end: by now we know that to every Borel set
M there corresponds & bounded Hermitian operator ¥ (M) and that
the function I has all the required properties except possibly multi-
plicativity. 2\

The Jast point iz settled as follows. Fix z and y and, for each,pair of
Borel setg 3 and N, consider the two expressions (B(M n Nl’x}ﬂ\) and
(EODE(N)z, 7). U N isa rectangle, then the class of all ‘sets M for
which ibese two expressions are equal is such that (cf("the preceding
paragraph) (i) 1t contains all rectangles and (ii) it is adBoblean s-algebra.
Consequently this class contains all Borel setg: Che same argument
may pow be applied to prove that, for each fix & Borel set M, the class
of admissible N’s is also equal to the class Q{sﬁl‘ orel sets, and thus the
proof grinds to a stop. NNO



CHAPTER III
THE ANALYSIS OF SPECTRAIL MEASURES

§45. The Problem of Unitary Fquivalenee )

New where are we? The main purpose of the study of operator theo}y
is to discover, formulaie, and prove the proper gemzmlizutic_mc;\\-'alid
for all Hilbert spaces, of the powerful results known in the igH8-dimen-
sional case. In so far as these results coneern normald npi.;m}‘m:s they are
all easy consequences of the possibility of reducing npfjr;].-al’ma.trir:es to
diagonal form. The diagonalization theorem }-'inh]sr}n\ particular, the
ultimate desideratum, namely a complete descripiion of the geometrie
behaviour of all normal matrices. Speaking slightly more cxplicitly we
may say that the diagonalization theoremlgives us o wmethod which
enables us to construct all possible normadleperators on a finite-dimen-
sional Hilbert space. The constructiongds hased on such clementary and
completely manageable material as t-iié voncept of a finite set of complex
numbers. Although the general spe¢tral theorem for normal operagors
is frequently asserted to be the«inﬁhite—dimunsiun:Ll analog of diagenaliza-
tion, it is nowhere near as.gowerful as its purely algebraic special case.
The spectral theorem e’@s tnot, for instance, tell us hiow io construet
all possible normal pperators. All that the spectral theorem does ac-
complish in this di\I’éct-ion is to reduce the problem to the construction
of all possible spaetral measures, and thereby, probably, 1o leave the
prospective eofstructor more bewildered than he was at the bogin-
ning, "

'l‘hege }.:remarks are offered by way of introduction to the circle of
ideag™yRually called the problem of unitary equivalence. ‘Lwo operators

and B are equivalent if there is an automorphism 7 of the underlying
Hilbert space § which carries 4 onto B, or, in more detall, if there exists
a unitary operator U such that U'Al/ = B. The problem of unitary
equivalence is to find necessary and sufficient conditions on A and B
for the existence of such a . Since equivalent operators arc geometri-
cally indistinguishable, any “description” of an operator A will ab the
same time be a description of all operators belonging to the same equiva-

T4
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lenee class as 4. Tn other words: since, geometrically speaking, A is
only determined to within unitary equivalence, a more delicate deserip-
tion of A neither should nor does exist.

It A is a normal operator with spectral measure E, the problem of
fnding ail operators equivalent to A I8 settled, in a certain repulsive
sense, by the equation UATU = [Ad(U7EMT). (The symbol U in
this equation denotes, of course, & unitary operator; the interpretation
and proof of the equation arc achieved by the formation of the usual
inner products and should be obvious to the reader who has followed\
the devclopment of spectral theory s0 far.) If, in other words, we sy
that two speclral measures It and F, with the same domain, are dquiva-
Jent whenever there exists a unitary operator U such that N

N

UTEQMU = FOD O
for all M in the common domain of definition of B anch F}, then & neces-
sary and sufficient condition for the equivalence of bwo normal operators
is the equivalence of their respective spectral megsures.
The main reason for feeling dissatisfied with the above answer to the

3

equivalence problem is that it leaves things pretty much where they
were: in order to decide whether or nottwo given operators are equiva-
lent we must still ask, separately 10¢ ench unitary operater, whether or
not it is willing to perform the piracle required of it. What is really
wanted ig a complete set of Firwariants {or the unitary equivalence of
normal operators. In qudlitative terms this means that we wish to
associate with each pofmal operator A & certajn “object” us so that
the following condifions are satisfied. (i) If A and B are equivalent
normal operatorshthen us = sz . (i) Ii A4 and B are normal operators
such that u, £Mip, then A and B are equivalent. (it} To every ohject
u there co ééﬁonds at least one normal operator A such thai wa = %
(iv) Th‘ezbmects u are easily manageable mathematical concepts, which
may, lesdeseribed in simple and, as far as possible, constructive terms,
afidy'whose definition is, preferably, jndependent of operator theory.
1N worth while to note in passing that the speetrum A(A) of a (not
even Tecessarily normal) operator A satisfies conditions (i), @if), and
(iv). We may therefore say that the points of A(4) constitute a set of
unitary invariants of A, but not a complete set of such invariants.
The first three of the above conditions deseribe nothing more than a
one-to-one mapping from the set of all equivalence classes of norﬂ}al
operators onto the set of all objects. The reader who reads on to finish
this book will, at the end, be n a position to judge whether ot not our
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golution satisfies the last condition. In order to motivaie both the result
we shall obtain and the method we shall use to get it, we begin, in the
next section, by taking a closer look at the situation in finite-dimensional
spaces.

§46. Multiplicity Funections in Finite-dimensional Spaces

The set of all proper values of a normal operator A on « finile-dimen-
sional Hilbert space £, together with their associated multiplicities,
form a eomplete set of unitary invariants of A. These invariants may
be described as follows. To the normal operator A there corregponds a
funetion % = 1, ; the domain of u is the complex planc 211'1(1'.L11\(2'~values
of » are finite cardinal numbers. (The value n(A) of the fulttion u at
the complex number X is fo be interpreted as the miulliplicity with
which X occurs as a proper value of d; if X is not adpboper value of 4
at all, we write 4(A) = 0.) Not every function wwth' the indicated do-
main and range arises in this manner {from gome normal operator 4.
In order that a function % do come from so é:>1 it is, in facl, necessary
and sufficient that the sum of all the \(altlcs of & be the dimension of
the Hilbert space  {and hence, in’gafrticular, it is necessary that u
vanish at all but a finite number of\pdints). Anyone familiar with the
diagonalization theory of normalimatrices can verify at u glance that
the function u, safisfies all th&~eonditions stated and discussed in the
preceding section. L

To prepare the way foF understanding the generalized version of
multiplicity functionﬁiuch a8 us, we proceed to describe them in
different terms. Sinee” infinite-dimensional spectral measures assoclate
projections with'Botel sets of complex numbers, and not with individual
complex numbers, it ought not to be surprising that we get a nearer
approxirq&téon to the final version of multiplicity theory if we regard
the donfain of a multiplicity function as the class of all Borel sets in
the spmplex plane, and not as the complex plane itself. The trapsition
ifi point of view is easy: for any non-empty Borel set M we define wa(M)
tovbe the minimum value of 1,(A) for all X in M; for M = 0 we write
u, (M) = 0,

Not every funetion u whose domain is the class of all Borel sets in
the complex plane and whose values are finite cardinal numbers is the
multiplicity function of some normal operator A on a finite-dimensional
Hilbert space. It is easy to verify that if u does come from some 4,
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then
w(M) = u(N)
whenever M and N are Borel sets such that 0% M C N, and
w(Up My) = min, {u(M )}

whenever (M.} is a disjoint sequence of Borel sets. Even these condi-
tions are only necessarys; they are not yet sufficient to ensure the exist-
ence of an A such that u = ¥4 . Tt is easily pussible to adjoin to these
conditions a finiteness requirement such that fogether with ,f they
become necessary and qufficient. Since, however, the conditiods Hitcady
stated are the only ones that persist In the general (not \mecessarily
finite-dimensional) case, we shall not bother to formulate the extra one
that applies only provincially. R4
Tnfortunately we are still far from the definition ol the kind of multi-
plicity function that really arises in infinijexdimensional cases, The
difficulty is that the concept of a set (Bote(s.'e or not) is not quite the
relevant one. The argument of our general multiplicity function will
not be a set but a finite measure. Spegk’ing yery roughly a finite measure
@ in the complex plane may be cé[ﬁsfdered as a sel, What we have in
mind is “the set on which g is}l’concentrated” or “‘the complement of
the lavgest set on which g vanishes.” Such phrases are nonsense of
course, (i is, however, j,m}é {hat a measure u for which there exists a
finite sel on whose :éﬁlﬁlement o vanishes is In an ‘obvious sense &
generalization of a’finite sct. Enough of the sense in which this i8 true
carries over toyth® Infinite case that s successful theory can be built on
it. We musty hbwever, postpone further discussion of these matters
until af@“‘khe presentation of the pertinent properties of measures.

7

a3

AN §47. Measures

U Let (X, S) be a measurable space; the only measures that we shall
consider from now on are finite measurcs whose domain of definition i8
S. We rocall that a measure v 38 absolulely conlinuous with respect o a
measure p, in symbols » <K 4, it »(M) = 0 for every set M such that
w(M) = 0. We shall have occasion £o use the Radon-Nikodym theorem;
it asserts that if x and » are measures such that » < g, then there exists
a non-negative function f in () such that v(M) = Jufdp for every set
M in S. A measure s is equivalent to & MeASUTE ¥y in symbols # = ¥,
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if g << v and v <« p; it is obvious that the terminology ks justified, or,
in other words, that the relation = iz an equivalence.

Tf 4 is a measure and M ¢ 8, wo shall write ua for the messure defined
for every N in 8 by puu(N} = p(M n N).

TrEoREM 1. If g s ¢ measure and 4f M and N are in S, then a neces-
sary and sufficient condition that py < uy 25 that p(M - N1 = 0.

Proof. Tfu(M — N) = 0and #f Myisa st in 8 such thint wy{A7) = 0,
then N\

palMo) = p(M a M) = w((M aN)n M) + u((3 —~ Njn u\,;\_u\o

If, conversely, pw < py, then, since we have uy(M ~ Ni= (J it fol-
lows that (M — N) = pu{M — N) = 0. ”: N

TrroreM 2. If p and v are measures such that » <<~3:\ Yo there exists
a sel N in S such thol » = px .

Proaf. By the Radon-Nikodym theorem th{}r} Pxists a non-negative
funetion f in (u) such that »(3) = [a RO Wp() whenover M €S
LN = {1:f(t) > 0}, then [y_v fdu = 0@n¥ therefore

v(M) = f»;;f;:_f dy

whenever M ¢ S, It follows that y‘(M) 0 if and only if w(¥ n Al = G,
ie. that » = py.

The objects of pl"in(,lp\l *mts‘ru‘( for us will be not measures but
equivalence classes of m\d,sures In order, however, Lo minimize complica-
tiens, we shall adopt‘a’point of view nrmlm to T.h‘lt frequently adopted
in humber theoryNt is casier to disecuss integers and congruence than
to discuss equivalence classes of integers and equality.) We shall ac-
cordingly f\\l‘mulate definitions and announce theorems aboul measires,
intendingall the while that our statements should be interpreted so as
to apply to equivalence classes of measures. An alternative point of
vieWw is to think of a measure as the class of all sets on which it vanishes.
The intuitively most Lelpful attitude is to think of a moeasure as being
the same as “the’” set on which it is concentrated; of. Theorems 1 and
2 and the remarks at the end of the preceding section. In order to
minimize the possibility of confusion we shall, however, continue (o
distinguish by our notation between equality in fact (u = ») and equality
by convention (u = »).

A typical statement which must be interpreted in Lerms of equivalence
is that with respect to ordering by absolute continuily the set of all
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measures 18 a partially ordered set. In technical language {which we shall
in fact not employ) our result will be that the partially ordered set of
gll measures is a Boolean ¢-ring with the property that every principal
ideal matisfies the countable chain condition.

{18. Boolean Operations on Measures

We continue to use the notations and conventions of the preceding
gection and, particular, the use of the word “measure” to mean
“finite measure.” T u and py are mMeAsUres, then there exists a Imeasire
i such that w & u, Ho & u, and such that u < v whenever the measure
» is such that p < v and e < v. In other words, the supremufn\ K

ot

==t ¥ iz N

of any two elements and pe of the partially ordered.f&ei ‘of all measures
¢ another cleruent of that set; the proof of this dssertion is achieved
sioply by writing p = # A4 po. With a vep, s Small modification the
same technigue may be used to show theletistence of the supremum
Vs of any countable family of measugedy’ There is, indeed, no loss of
generality 10 assuming that Zsp AXNS w—f this were not already
true, we could make it true by, ﬁoﬁ}iﬁstance, replacing g; by a suitable,
small positive multiple of u;. ([Ehé ‘teplacement yields a measure equiva-
lent to g;.) It follows thatgthe ‘et function p defined for each M in 8
by w(M) = Z,u{M} 35, gmeasure; it is clear that = Yiki. In view
of Theorern 1 below, %t\‘is"not- cven necessary to verify the last assertion;
all that is needed {rem our digcussion is the {act that every countable
family {p;} of IndaALTes i3 hounded. (To say that a tamily {u;} of meas-
}n'es is bm;{tﬁiﬁﬁl“r’nea.m that there exists a measure u such that p; € #
or all vakes of j
; i}{eﬁ of 4.)

TE\I}{GREM . Hvery bounded family () of measures has @ SUpremuimn
g i fact, {p;} has o countuble subfamily {1y} Such that Vi = Volits

Progf, Y.et p be a measure such that p; K¢ for every I and, for
each 7, let ; be a set in 8 such that p; = px; - TForm all finite upions of
the N /s, evaluate u on each such union, and leb @ be the supremui of
the numbers so obtained. If {M .} is a sequence of such finite unions
with the property that g(Ma) — @ and it M = U Mo, then pw = Viki-
Indeed if p(N; — M) > 0 for zome 4, then p(N;U M) > a for some
n and, since this contradicts the defnition of a, we have i & e - 1,
on the other hand, » is & measure such that g; K7 for every j, then
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px; & v for every 7. It follows that pa, K v for every n and hence that
Ky << .

It follows from Theorem 1 that every non-empty family {u;} of
measures has an infimum, Aj;; the infimum i3 obtained by forming
the supremum of the family of all measures bounded by every p;.
Consequently the partially ovdered set of all measures is not only a
lattice, but even a o-laftice, and & boundedly complete lattice. An
application of 47.2, similar to the one made in the proof of Theoremgh,
shows that this lattice is distributive. The main point of +7.2 is ax-
actly its applicability fo such situations; by rcans of it most Qf\the
algebraic facts concerning measures may be reduced to the muespond-
ing algebraic facts concerning sets. N

It is eonvenient to say that two measures p and » are orthogonal, in
symbols g L »,if p A v = 0; a family {g;} of meastieg"is an orthogonal
Jamily if u; L u, whenever j ¢ k. Another exampleNof the sort of appli-
cation of 47.2 that was mentioned in the prg‘('éing paragraph oceurs
in the proof of the assertion that s bounde\d})rthogonal family of non-
Zero measures is necessarily countable. )

Our next and last result abouf the tzllgvk)m of measures asserts that
the set of all measures is not only.® distributive lattice but is i fach
guite anxious to look and act lke'as \Boolean algebra. There 13 in general
no “unit” measure, i.e. the set{o{ all measures is not in general bounded,
and it is therefore not onlyy fatse but cven meaningless to say that every
measure has a compleme\ht 1t does, however, make sense to spesk of
relative complemenffs, or differences, and that is what Theorem 2 does.

THEOREM 2. PRy and v are measures, then there exisis @ measure jo
such that po 1 ir\cﬁld MYV =puvr

Proof. iz\lf'(( p, then » = py for some N in S, and uz_y does every-
thing cxpe goted of . In the general case (i.e. when » is nob nocessarily
boggd?d by u) this special result may be applied to . v » and » in place
of\e and » respectively.

§49. Multiplicity Functions

We are now in a position to describe the objects which will occur a8
complete sets of unitary invariants for spectral measures. A maultiplicity
Junction is a funetion w whose values are (not necessarily ﬁ_rute) cardinal
numbers, whose domain is the set of all finite measures in a measurable
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space (X, 8), and which satisfies the following three conditions: @ if
y is the measure which is identically zero, then u(p) = 0; (i) if x and
y are TEASUTeS ench that O # » < g, then w(e) € uly); and (i) if a
messure s 15 the supremum of & countable orthogonal family {u;} of non-
sero meastTes, then w(y) = min [ulu;) 1. We obscrve that since & bounded
orthogonal family of non-zero finite measures is necessarily countable,
the third condition is only vacuously strengthened by removing from
+ the word “countable.’”

[t is not hard Lo give examples of multiplicity funetions. Given the
measurable space (X, S), fet {u;) be an arbitrary orthogonal fanily-of
finite, non-zero mneasures on $ and, for cach 7, let u; be a cardingl Tim-
per, I 4 non-zero Measurc g is covered by the family {e;}Jn the sense
that u = Ve A uj), we define u{y) to be the sma]lesb.forié of those
cardinial numbers 1y for which u A 4y # Q; for all o’ghé{ Theasures p we
define u(u) to be 0. We leave to the reader the verfieation that the % so
defined 35 indeed a multiplicity function, and m@Jturn to the more im-
portant task of proving that every multiplieity function may be ob-
tained in this manner. P \%

To rmotivate our procedure we take, ane more look at the example of
the preceding paragraph. If j and are indices such that u; < i,
then wlu; v ue) = ulpgs) = Ui~ Bty 1s really possible, n other words,
that the second condition inzthe definition of multiplicity functions i
not vacuously satisfied, 1.e bbb p and v are measures such that 0#r&Lp
and u(p) < w(v). It 18 ’}\étﬁral to say that if for o given measure & this
never happens, if, fab s, w(y) = u(y) whenever 0 # » & u, then ¢
hag wnaform mu‘lu’gb’iiéiiy. In the example of the preceding paragraph
this conecept 18 j’%luést-rated by each term of the defining family; it is true,
in other \\'({fa}j’tha.t ¢; has uniform multiplicity (equal to gy for each
value of g\ ' :

'Tfll%iiml 1. If u is a multiplicty funclion and if p 8 @ OR-FETC
fmite measure on S, then there exisls @ NOM-ZEF0 MEASUTE B such that p K ¢
and such that po has uniform multiplicity.

Proof. Write 5 = V {rir K, () > ulg)}, and (48.2) leb o be &
measure such that pp L 7and pe V7 = H Since (48.1) 7 may also be
expressed as the supremum of a countable family of measures ¥ fqr
which w(») > wu(y), and since & standard use of 482 shows that this
countable {family may be assumed to be ortbogonsl, it follows that
u(s) > uly). Since px = po v 7, it follows that po 5 0 and hence that
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ul(m) = u{). To prove that g has uniform multiplicity, suppose that
0 # » & p. Since the assumption u(v) > w{mo) = ufp) leads to the
contradiction » < #, the proof is complete.

TurorEM 2. If u is a multiplicity function and if p is @ non-zero
findte measure on 8, then there cxisis o {necessartly connlable) orthogonal
jamily {u;} of non-zero measures such that each u; has wniform multiplic-
dy and such that p = Viu; .

Proof. In virtue of Theorem 1 there do exist orthogona! familiés ef
non-zero measures cach term of which is bounded by ¢ and }m,gs. uQiform
multiplicity; let {¢;} be a maximal family with these p.a:opc\ﬁ:ies. 1f
Viu; = v and if » # p, then, by 48.2, there exists a non-zefG measure
bounded by » and orthogonal to v. An application of ‘Lheorem 1 to that
measure shows that its existence contradicts the.fadximality of the
family {u;} and it follows that Vu; = p \4

TrECREM 3. Jf w18 a multiplicity funclion,,xlh}r{ there existe an orthoge-
nal family {g;) of non-zero finile measures oS such that each u; has uni-
form multiplicity and such that w = V(A ;) whenever p 95 a finite
measure on S. ™

~

Proof. Select & maximal orthogdtial family of non-zero finite measures
on § and apply Theorem 2 to edch term of that family. We may collect
the resulting family of familiés into one family {u,} which will then be
a maximal orthogonal fafily of non-zero measures and which will, in
addition, have the property that each x; has uniform multiplicity. Tt
remains merely to prove that if {g;} is a maximal orthogonal family of
non-zero finite méasures on S, then p = V;{u A ;) for cvery finite
measure 4 oS, “The argument for this purpose proceeds just as in the
proof of’\'gh}éi'em 2. If, for & given u, Vi(u A p;) = v, and if p # %
then, l;}(\i’&?, there exists a measure u; such that 0 7 po << pand u L 7
Singenit follows that mAu; = mA (e Ap) KmAav =90, ie that
ﬁ;)}“ 11; for all 7, this contradiets the maximality of the family fus} and
prdves therefore the relation g = V; (i A ;).

It is clear that Theorem 3 implies what we promised to show, 1.8
that every multiplicity function may be obtained in the way in which
we obtained our first example. We cannot, of course, assert that the fam-
ily {u;} described in Theorem 3 is uniquely determined by the multiplic-
ity function u; several applications of Zorn’s lemma have cubt us off

from being able to claim any naturality for the objects whose existence
we proved.
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§50. The Canonical Example of a Spectral Measure

Suppose that (X,8)isa measurable space, {4} is an orthogonal fam-
ly of non-zero finite measures on S, and, for each value of 7, u; is a
cnrdinal number. For each value of j we consider the Hilbert space ob-
tained by forming the direct sum of u; copies of L(u;) and we (tem-
porarily) dencte by § the direct sum (over the index j) of the Hilbert
spaces H0 obiained. A typical element of § is a doubly indexed {amily
{fa} of functions on X such that fi e Rlus) for each j and k; for a fixed
value of 7 the index & has %, possible values. By the canonical spechral >
measure assoviated with the families {u;} and {u;} we mean the spectral
neasure I defined for each M in 8 by EQM) (Fal = Dufabess )

One of our rosults will be that upon the application of @ Stitable
isomorphism every spectral measure may be put into jhis eanonical .
form. Applying ibat result to compact, compiex spectaf&? measures we
conclude that every normal operator is isomorphid tova direct sum of
multiplications by bounded measurable funcigiolxs‘ on finite measure .
spaces, or, equivalentiy, that it is isomorphictd’a multiplication by &
hounded meazurable function on a direct Aupe’ of finite measure Spaces.
(We have pot given and we need not,’cpnﬂ will not give the detailed
definition of the latter concept.) Angtier way of expressing this result
is to say that & suitable (m general highly infinite) measure # May be
introduced infc the spectrumof any normal operator A so that A be-
comes isomorphic to the ‘nzmlt-iplication operator which sends each
function f in .(u) on thqifﬂnct-ion g defined by g(d) = Af(A). Since all
these statements will Be,immediafe consequences of our study of spectral
measures, we shall ddyote our atiention to spectral measures exclusively.

In terms of speetral measures it is easy to deseribe our intentions.
We shall ass\(}c;ia‘tc a multiplicity function « with every spectral measure
E in such & way that if {u,} is any orthogonal family with the properties
d'«‘Si‘»l‘ibgﬂ"m 49.3, then E is isomorphic to the canonical spectral measure
agsoefuted with {g;} and {u(u;)}. (Observe that this implies in particular
thit/ despite the non-unigueness of {pj}, the canonical spectral measure
i8 determined by u uniquely to within unitary equivalence-) It will fol-
low that two spectral measures are equivalent if and only if they have
the same multiplicity function, and consequenily the proof of this
result will indeed fulfill all our promises.

_ Lot ug now refurn to the canonical example described above. ¥R
is any one of the doubly indexed family of Hilbert spaces used to form
H, then § may be viewed as a subspace of D. Since the subspace Ris
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invariant under E(M), for every set M in S, the projection P with
range R commutes with the spectral measure I5. (1f ¥ 15 the spectral
messure of a normal operator A, the last assertion may be reformulated
by saying either that the subspace & reduces A or that the projection
P ecommutes with 4.) These comments indicate that the projections P
which commute with a spectral measure } are the building hlocks out
of which K is constructed and that the analysis of spectral measures
ought, therefore, to analyze all such projections. In the next two sectitns
we indicate the details of such an analysis in the finite-dimensional case;
after that we shall finally be ready to enter with understanding ‘ribo the
technical details of the general case. A

7N
L

§51. Finite-dimensional Spectral Nlmfsilr(:s

Let E be the spectral measure of a normal ogetator A on a finite-
dimensional Hilbert space . Let {);} be the family of all distinct proper
values of A; for each 7, let E; be the valu’e’N F on the scl containing
A; alone, and let u; be the dimension of {he range of £, (i.e. the multi-
plicity of the proper value X;). It is inmany respects helpful to consider
a structure analogous to the onesd§rmed by the N's, E's, and w's. The
analogs of the \’s are to be poinds spaced af, say, unit distances apart
on a horizontal line segment{ The role of E; is to be played by & finite
set, corresponding to the &age point ) ; and thought of as arranged In &
verfical column stapdihg over A;; it will be convenient to space the
points of such a colimn so that each of them is at a unit distance from
its nearest neighbots. The fact, finally, that u, is the dimension pumber
correspondiqgf‘bo*E ; is to be indicated by letting the set corresponding
to E; hy {gardinal number ;. The entire set-theoretic configuration
thereby:j&%scribed is exemplified by the diagram below. If I’ Js a pro-
jectioniwhich commutes with F, then the range of P is a subspace which

R
\ o

O

-
o -
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reduces A. The operator A when restricted to the range of P has its
proper values among the A;’s and is such that the proper space cor-
responding to cach A is a subspace of the range of E; . The set-theoretic
~ analog of a projection such as P is, therefore, a set obtained by select-
ing a (not necessarily proper and not necessarily non-empty) subset
from cach eolumn and forming the union of the selected sets; in other
words the analog of P ‘s an arbitrary subset of the union of all columns.
A distinguished role is played by the subsets which consist of entire
columns; they are the analogs of the values of the spectral measure.

In accordance with our indications in and since §46, we ghall thiks
of multiplicity as defined not for proper values only but also forsets
of proper values, or, equivalently, for arbitrary values of the~éﬁécfral
measure. 1f, for instance, the speetral measure E is such thaf*its asso-
ciated colump configuration is exactly the one indicated by our diagram,
then the multiplicity of the value of E on the entire eomplex plane is
1, and the multiplicity of B, My Ny Aol)is 20N \%

Once the diagram corresponding to a spectran\easure has been con-
strueted, it is frivial to road off from it the afswer to every multiplicity
question. The multiplicity associated withjany set of Ws is the largest
pumber of rows each of which cuts across. the entire set under considera-
tion. If the spectral measure 18 sqelif that every column. is of height 1
(if, in other words, every properwalue is gsimple), then the answer to
every multiplicity question is A or 0. Since the answer to the most general
multiplicity question can be}formulated in terms of rows, in terms, that
is, of what may well bi\i;}ﬂled simple spectral measures, it behooves us
to try to understand(the concept of simplicity and the manner in which

a general spectridl Measure 18 made up of simple pieces.
S
§i% Simple Finite-dimensional Spectral Measures

Th?.jﬁnite—dimensional case and the general case deseribed in §50
’f”'a*]fe“\COTltact with each other through the {ollowing comment. Sup-
Pagé that the finite-dimensional spectral measure E discussed in tl‘le
preceding section is simple, i.e. that oach u; is equal to 1. Consider 1
this case the measurable space X whose points are the proper values
of the operator A and all of whose subsets are measurable; let ¢ be 'the
measure in X whose value on any subset of X is the number of points
in that subsct. Tt is easy to verify that, under these circumstances, the
canonical spectral measure associated with p (ie. the one whose valu‘e
on & set M is multiplication by the characteristic function of M) is
isomorphic to E. In other words: the building blocks which served to
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construct our general canonical examples are natural generalizations of
the simple picces that occur in all finite-dimensional spectral measures,

The simple picees may also be characterized intrinsically, without the
use of an auxiliary measure space. Every vector x in o finite-dimen-
sional Hilbert space © may be written as a sum, » = Z;x;, where, for
each 7, x; belongs to the range of £;. If we apply all possible values of
I to z and then form the projection on the subspace spanned by the
vectors so obtained, we end up with a projection I* such that E < P,
{A projection such as P is called cyclic. The terminology 1s suggested by
that of eyelic groups and the circumstance that the range of {71s spamﬁd
by the set of all vectors of the form A"z, » = 1,2, - - . The reader is
advised to supply the proof of this last assertion.} If & 13 '&iﬁiplc, we
ean exhibit 1 as a cyclic projection by making sure that\xfas a non-
zero component in the range of each F;; it is true, neli\-'é'rsek}f, that if
E is not simple, then 1 is not cyelic. S

Although both the characterizations of simpliely described in the
two preceding paragraphs have their uses insthe infinite-flimensional
case, the most revealing and applicable clm;(ést.t:rizatiun 1z the one that
follows. With cach projection P that cdwimutes with i, ic. with each
subspace that reduces A, we associate ‘the least vahie of the spectral
measure ¥ which contains 2. ’l"hisoﬁoﬁétruct-ion has a perfeet analog in
our column diagram: with each jée{'therein we associate the union of
all the columns that have a_non-empty intersection with the set. The
rows, the objects which endble us to count multiplicitics quickly, have
an interesting relation @‘,ﬁhe associated column set. A necessary and
sufficient, condition tha?t\a set be a row (in the scnse that it contain not
more than one pojabfrom each column) is that every one of its subsets
may be obtained\ay the interseetion of the given set with a suitable set
of colum.ns: ,ﬁhﬁivalently: a necessary and sufficient condition that
the entir¢\diagram consist of but one row is that every one of its sub-
sets be G} column. The geometric fact suggested by this characterization
is tpupd A necessary and sufficient condition that a finitc-dimensional
gpeetral measure be simple is that every projection P which commutes
with it be one of its values. Another way of formulating the same result
is this: s necessary and sufficient condition that a finite-dimensional
spectral measure be simple is that its values form a maximal abelian
sef of projections,

If the reader will keep in mind the comments in this section and the
preceding one, and if he will systematically compare each definition,
each theorem, and each proof with the corresponding concept, asser-
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tion, and eonstruction associated with our column diagram, he should
nave no diffieudty in [ollowing the remaining technical details. Some
of the distinetions that we shall be forced to recognize do not, to be
sure, show ub in our diagram. If, however, the diagram is generalized
50 as to admit infinitely many (and possibly even uncountably many)
rows and colimns, {hen it becomes an almost perfect schematization of
our work. If the sountable subsets of the base space, together with their
pomplernents, are the ones that are declared measurable, then even the
phenomena o non-measurability can be exemplified by generalized
eolumn diagrams. ~
O\
£33, The Commutator of u Set of Projectiong

From now on we shall again reserve the symbol £ for agtarbitrary but
fived Hilbert space and the word ‘‘projection” will refet to projections
whose domain i 9. "\

We reeall that the symbol < denotes commu{ativity. We now exiend
s domain of applicability by writing P < “hénever Pis an operator,
Q is a set of operators, and P o @ for al@in Q. Since we are particu-
larly interested in projections, we infeoduce the notation A for the
sef of all projections, and, i P is any’:ﬁsﬁbset of A, the notation P for the
sot of all those clements P of Af;):r“ which P «+ P. The purpose of this
section is to study the elemefttaty properties of sets such as P,

Turorsm 1. If P Cyhythen P C P,

Tanonmy 2. IFP @ Q C A, then @ C P

TrEOREA 3. UP C A, then P = P _

Progf. S}.gkxétitl.lting P for Q in Theorem 2, We obtain P C P I,
on the O%Zéﬂhand, we apply Theorem 1 0 P’ in place of P, we obtain
the reyefs® inequality P/ C P,

Tasorew 4. A set P of projections 8 commudative G.e. P CP)
andonly if P is commulaiive (i.e. P’ CP)

Proof. If P C P/, then an application of Theorern 2 shows that
P’ C V. If, on the other hand, P” & p = P, then, by Theorem 1,
PCy.

TeEoRrEM 5. If P C A, then 0 ¢ P, 1P, and if {Pi} s @ famaly
of projections in P, then Y P; € P and A;P;e P

Progf. If P and €} are projections, then P <> @ i8 equivalent.' to the
assertion that the range of Q. is invarian under P. The conclusion fol-
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lows from the fact that the span and the interscetion of uny family of
subspaces invariant under P arc themselves invariant under P.

In view of Theorem 5, the eommulator P’ of any sct P of projections
is a complete sublattice of the lattice A of all projections. Since P! con-
tains 1 — P along with P, the lattice P’ even possesses a natural com-
plementation operation. It follows that if P’ happens also to be com-
mutative, so that the lattice-theoretic distributive luws ure valid in
P (cf. 30.3), then P’ is & complete Boolean algehra.

N\
§54. Pairs of Commutators O\

Throughout the remainder of this beok (X, 8) will be g'fixc¢d meas-
urable space and K a fixed spectral measure on 5. We, r;[;;-LH denote the
range of E (Le. the set of all projections of the form 6171 for some M
in 8) by E; weshall write P = E and F = P Si;re:?s‘E 15 rommutative,
it follows (53.4) that F = E” is also commulaly¥e and henee that F
is a complete Boolean algebra. The essential relations among E, F,
and P are the inequalities E € F C P apd'the cquations B = P’ = F
and F' = P,

The consideration of F is not omd of the things that our heurstic
considerations prepared us for; jn‘:,{the finite-dimensional cases F turns
out to be the same as E. In the general case F may be viewed as a kind
of completion of E. The set /& need not be a complete Boolean algebra-—
F is. The projections which' commute with all the clements of P =E
need not belong to '—{fhéy do belong to F. Since our development will
vield an almost complete insight into the structure of the projections
in F, we can oplghin information, and not lose any, by incorporating
F into our study?

In all Qui}construct-ions the space X will play a relatively minor,
auxﬂi@gy\ 5le; what is important is the pair of sets F and P. We propose,
in other words, to present a structure theory for pairs F and P, where
,E‘a;hd P are sets of projections, F is commutative, B = P and P =F

\Simnce, however, our proofs will make use of X, #, and E, the material
out of which our particular F and P were manufactured, it might seem
that our promises are greater than our deeds. For the sake of the reader
who is interested in the additional generality we record here our assur
ance that we are not really sacrificing any of it. The point is that t-h.e
standard theory of representations of Boolean algebras jmplies that if
F is any complete Boolean algebra of projections (i.e. a complete Roolean
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subalgebra. of A), then there exists a measurable space (X, S) and &
spectral measure 7 on S such that the range of E is exactly F.

In view of the last nssertion, the presence in our theory of X, E, and
E might actually be said to be a gain in generality rather than a loss,
spee the appa.r{zntly more general theory involving T and P alene is
slways associnted with an X and an & such that E = F. Although the
dhallowness of this comment is probably obvious, it does help fo clarify
matters stightly. The various levels of the constructs we will employ
are clearer if they are kept separate and if, therefore, it 1 not assumeds

that E = F.

N

. . . . ¢\
The reader who 18 not interested in, or did not understand,Ale pre-

ceding two paragraphs, 15 advised to forget th

em. Our previews of com-

ing attractions are herehy over, and we are nOw going to setile down to

an uninterrupted showing of the main feature

; the cagstﬁof characters i3,

o5 anpounced at the beginning of this section, X, EnE; F, and P.

§55. Colump,s~'::\

N7

W

If P ¢ P, the column generated by Py i symbols C(P), i8 the small-

est element of F which contains P: C{PS = A
The beginning of the theory of ‘olumns is

(PP £Fe Fi.
quite easy- Tt ig clear, for

instance, that I = C{P) forgeyery 7 in P and that C(P) vanishes if
and only if P vanishes. Tt is also clear that the formation of columns is
% monotone operation {(Q'@:.”that ii P and @Q are in Pand P £ & then
C(P) £ €(qQ)), and that the column generated by & projection in F
is itself (ie. thatdi# « F, then CUF) = F). On & slightly higher level
we encounter tlpiailditive and multiplicative properties of the function C.

Y ] . .
Tasormit: If {P) is @ Family of projections ¥t P and if

P = V;P;,

Ci{P)

i

V; CLP).

Proof. Since P; < P < C(P), it follows that oy £ o) for al

i and hence V, C(P;) = C(P). Since, o the
for all §, we have also P = V; P; & V; C(P5)

CP) £ V5 C(P;)-
(Recull that V; C(P;) ¢ F.)

other hand, P = C(F;
and consequently
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There is no intuitive geometric reason for cxpeeting (f fo be multi-
plicative as well as additive, and indeed 1t is not; the following result
exhibits the one little shred of multiplicative bebaviour that ¢ does
possess.

TeEOREM 2. Jf P e Pand F ¢ F, then C{FP) = F(P).

Proof. Since FP £ F and FP =2 P, it follows that

C(FPy = CIFYy =F
and O
CFP)y = C(P), O\
and consequently that C(FP) < FCO(P). Since, on thei};}thér hand,

—(1-FP+FPc(—F)+EBD
it follows that \‘
C(P) £ (1 —F) + COFRANY
and hence that ,x"\\':
FOP) < 1#0@‘13);?@‘(’1?13).
Because of its later applicability we:récord here for reference an im-
mediate corollary of Theorem 2, 0N
Tororem 3. If PeP, Fe F ,and 0= F = ((P), then IFP # 0.
Proof. C(FP) = FC(P{“

O\ §56. Rows
Arowisa proj€etion B in P such that if R = P ¢ P, then P = C(P)E.
We note thal 3P and R are projections in P such that P £ R, then,
since P £,6(P), the inequality P < C(P)R is always valid. The state-

ment thﬁE\R is & row means that the inequality reduces to an equality
for allj;dnmsmble P,

” \;EHEOREM L. IfRisarowand if R = S e P, then S is o row.
Proof. I 82 PeP, then R = P and therefore 7' = C(P)R; it
follows that P = PS = C(P)R-S = C(P)S.
TrEOREM 2. If R isa row and if P and Q are projections in P such
that P < R ond Q < R, then P o @ and C(PQ) = C(P)C@Q). If

)y = C@),

(A

then
P =0
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Proof. Since [7 = C(P)R and Q = C(QR, the commulativity of
P and @ and the last nssertion of the theorem are ohvious. To prove
that under these speeial cireumstances ¢ is multiplicative, we note that
snee C(P) = ity and C(Q) = C(R), it follows that

G Q) CR) = CPYCQ):

The desired conclusion follows from an application of 53.2 to the rela-
tion PO = CUPCIDER.

Tverything we are going to do from here on in will aim at showing,
how rows are alwiuys gt together to form columns. At the presedt
stage, however, il discussion 1s somewhat hampered by the fa-qt\}hat
we have no puriicular reason 1o believe that such things as TgWs even
exish, We find 1. neeessary, therefore, to begin 2 somevyhat Tengthy
detour whose purpose is to dig out the rows that we nepd ‘from the
Hilbert space and the gpectral measure that are at the ba}*is\ of our theory.
~NY;

857, Cyeles \‘ o

For any vector » in 9, the cyelic projegiion or more concisely the
eyele gencrated by 2, I symbolg Z{(x), 48 the projection on the subspace
of § spanned by the set of all veg:tpi:é %of the form E(M)z, M ¢ 8. Our
first duty is to show that the capeept of cycle is nob entirely foreign to
the subject we are studying. L )

Tueorem 1. /f z ¢ ~th>n Z(z) e P

Proof. 1t A andsy we in S, then BODEW) = E(M o N)z, 50
that the range of () js invariant under B(M). Tb follows that the
range of Z(x) r dices £(M), and hence that EQM)« Z(z). Since M is
arbitrary, thisfmeans that Z (z)e B = P. :

IWG my’%ﬁ- proceed with good conscience to derive the properties
of C'}.'Cl\és."t-md their relations to rows and cOlUDTS.

Mvorem 2. If PeP,xe D and P < Z(x), then ' = Z(Pz).

Proof. The range of Z(Px) is, by definition, the span of the set of
all vectors of the form E(M)Pz = PE(M)x, MeS It tollows that ihe
range of Z(Px) is the image under P of the span of the set of all vectors
of the form E(M)z, M ¢S, and hence that Z(Pz) = P4 = P

Trsorem 3. If F ¢ F and x ¢ §, then Fz(z) = 2(0F2)-

Proof. 1f P = FZ(z), then, by Theorem 2,

Fa@) = P = Z(P2) = Z(FE@)e) = L(F)-
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TusoreMm 4. If PeP and ¢ &, then Pz = 0 and Pr = ¢ are
equivaleni to Z(x)} L P and Z{x) £ P respectively.

Proof. If M ¢8 and Pr =0, then PEM )z = E(M)Px = 0. Tt
follows that Py = O whenever y belongs to the range of Z{x) and hence
that PZ(z} = . Applying this result to 1 - P in place of P, we see
that Z(z) £ P whenever z belongs to the range of 2. These remarks
prove a half of both the asserted equivalences; the remaining halves
are trivial. ~

It is time to observe that if x = 0, then Z{z) = 0, and that ’r,he more
significant converse of this implication is zlso valid. (RRecall “thit the
range of Z(z) containg E(X)r = =z.) If we introduee théwconvenient
abbreviation C'{x) for €{Z{z)), then we can ammum:,gi:l’ “Yimilar state-
about C(z}: a necessary and sufficient condition that{C(x) = 0 is that
¢ = 0. This last assertion has a slight gencralightion which we shall
find useful. O

PN

TuroreM . If FeF,ze D, and 0 # K & C(z), then Fr # 0.

Proof. If Fz = 0, then, by Theorem¥, FZ(z) = ¢ and therefore

=F.Clx) = C(F-Z(z)) = 0. o\

§58. quzﬁ:’éhlc Projections

A projection F in F is geparable if every orthogonal family {Fi of
non-zero projections in K}sﬁch that FF; < F for all j, is neeessarily count-
able. The main purp& of this section is to show that the columns
C{(z), introduced at~the end of the preceding section, are intrinsically
characterized by {He property of separability. We (lb‘:Gl\E' that if F and

G arc prOJec{m\s in F such that F < @ and € is separable, then F Is
separable\

THhDRbM L. If {F;} 4s a ecountable orthogonal family of separable
progqétaons wn F,and if F = V;F;, then F is separable.

Proof. 1f {G,} is an orthogonal family of non-zero projections in F
such that Gr = F for all k, then {F,;G,} is, for each value of j, an or-
thogonal family of projections in F such that F; G, < F; for all k. It
follows that, for each j, F;G, = 0 except for a countable set of values

of k. Since Gx = FGy = V,;F,6, for all k, it follows that {G,] is count-
able,

THEOREM 2. If x € D, then C(z) 1s separable.
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Proof. If {F;} isan orthogenal family of non-zero projections in F
wch that Fj = ('?(-f') for all j, then Z;F; = C(z) and eonsequently
3| Fi F=le 1% The countability of {#] follows from 57.5.

THEOREM 3. If P and {§ are m P, if P = C{Q), and if Q) is sep-
arable, then there erists o peclor T on the range of P such that C{P) = C (x).
Hence, tn particder, if e Fand Fis separable, then I = Ciz) for
some vector T.

Proof. et 1o i} beoa maximal family of non-zero veetors in the
range of P such that Cle)0(ze) = 0 wheneverj #= k. Since Clx;) = C@Q),
for all 7, and since ((Q)) is scparable, the family {z;] is countable and >
there i therefore no loss of generality in assurnipg that Z; EAES2
If we write @ == ;%,, then @ is in the range of P; we shall complete
the proof by showing that C(P) = Cz). I c(p) — Clx)# 0] then,
by 55.3, the range of (C(PY — Cl@NP eontains a noq—qeio vector ¥.
I follows that y belongs to the range of P and hen(;e:to\ the range of
(P). Since y also belongs to the range of C(F) — €29, it follows that
Clxyy = 0. Using 57.4, we see that C(z) Z{y) ~#Dand hence, by 55.2,
that C{z) C(y) = 0. Ii we knew that (s Clx) for all j, then we
could conclude that the existence of ¥ contradicts the maximality of
the family {z;}, and the proof would_hes complete. It i8 therefore suffi-
dient to prove that Z(z;) = Z{x) fdljk&[l g.

Since Clz;)ae = s, 1t follows that C(zz = T3 and hence (since
0z, ¢ F) that Z(x)z; = 2(& e}z = Clz) Zz)r = Clz)z = =; for
all 5. Consequently Z(z) EQMz; = E(M) Z(z)x; E(M)x; whenever
M ¢, and therefore Z(BA(x) = Z(z) or Z(z;) = (@) for allj.

A 1

A X
§§9 Characterizations of Rows
Since ork\eééi\'éial oecasions we shall run into pai
and @ ip:jP\such that C(PYC@) = 0, it js convenient t0 in{roduce a
technjcah term for the phenomenon; under these cireumstances we shall
ka;‘.hﬁt- P and Q are very orthogonal.
tEorEM 1. A necessary and sufficient condition that @ projection
RinPbearowisthatif Rz P e P, E 2 Q ¢ P, and P and @ are o
thogonal, then P and Q are very orthogonal.
Proof. Tf R is a row, if P = C(P)E, @ = C(@R, and if P@ = 0,
then C(P) C(Q)R = 0. Applying 55.2, We conclude that-

C(P)C@Q)CR) =0,

rs of projections P
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and hence, by the monotony of the formation of columns, C{P)C(Q) = 0.
This proves the necessity of the condition; to prove suffeiency we sup-
pose that B = P ¢P and we write QQ = C(PYR ~ P. 1t is clear that
R = QeP and that 1°Q = 0; it follows from fhe hypothesis that
C(PYC(Q) = 0. Since, however, the relation @ = C(P) implies that
C(Q) < ((P), we may conclude that C(Q) = 0 and henee that @ = 0.
In other words P = ()R, and therefore, since I? is arbitrary, R is a
TOW.

We turn next to one of the results whose object is to tie togethes the
various concepts we have introduced. We shall be able to makese of
the result immediately to obtain (in Theorem 3 bhelew) :Losi}__{hiﬁcanﬁ
strengthening of Theorern 1. O

TaroREM 2. If P ¢ P, then there exisls nn orth.ngr;;gr&f"famﬂy {Z{z)}
of eyeles such that P = V;Z(x;). \\

Proof. Let {z;} be a maximal family of sleheZero vectors in the
range of P such that Z(x;)Z(x,) = 0 whene:{@jj = & 17

P = V;2() 38,

then the range of I° contains a non-zr;,r:r} Aroctor @ such that Z(z)z = 0
for all j. Tt follows from 57.4 thatnZ{(x;)Z(z) = 0 for all 7. Bince this
contradicts the assumed maximaliify of the family {x,}, we must have
P— vy Z(z)=0 N

In view of our subsequéilt results on orthogonal sums of cycles, the
reader is warned to gé{’ke’ an cffort to keep straight the conclusion of

Theorem 2. The essential point is that the family {Z(x;)} is pot agserted
to be very orthogonal.

TI-IEOREM"‘&;"’A necessary and sufficient condition that o projection
R in P b @yow s that if Z(x) and Z(y) are orthogonal cycles such that
E =z Z@)\und B = Z(y), then Z(x) and Z(y) are very orthogonal.

Prdof. The necessity of the condition follows from Theorem L
Fg prove sufficiency, we suppose that R = P ¢ P, B = Q ¢ P, and P

d @ are orthogonal: in view of Theorem 1, the desideratum 18 to
prove that P and @ are very orthogonal. According to Theorem 2, there
exist orthogonal families {Z(x;)} and {Z ()} of cycles such that P =
V;Z{(z;) and @ = V. Z(y). Since PQ = 0, it follows that

Z(z)Z(y) = 0
for all 7 and & and thercfore, by the hypothesis of the theorem,
Clx;)Clye) = 0
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jor all § and . Qe the additivity of the function C implies that
Gy = V0

and
¢y = VaClya),

e may eonchude that ((YC@) = 0.

160, Cycles and Rows

Our theorems get deeper Al the time. In this section we prove twWo s
key propositios, (he first of which asserts that eycles do indeed have
the meastre-theovetic clirueterization that our heuristic comments
hinted at. {The sevemi] one can speak for itself.) O '

Trponcm | ff « e and if u 1s the measure on 8 deﬁ:ﬁe&:‘for avery
Min S by w(d) - (M2, x), then there exists an isomérphism U from
By(g) onto the runyge of Z(x) such that U E(M)USf o) x - whenever
feQlp) and I €S NY;

Proof. We write Uxy = E(M)z for every-M n 8. It the definition
of U i extended from characteristic functions to simple functions by
the requirement ol linearity, then, i wiew of the defimtion of Z(z)
U becomes o limear 11':1115f()1~mz1tion,fyfiiri s dense subset of Llp) onto &
dense subset of the range of AEAY :TBe additivity of B guarantees the
uniqueness of the definition of L Since the relations W I = p(M) =
Bz, z) = | EODy Y Mg, || shows that {7 is norm-preserving,

I may be exlendod to an 1somorphism. tf M, and M are in S, then

U(X-%’xs\r) - ‘Q'{;{,\;‘On‘“) = B(Myn Mz
\\ _ BM)EM)x = B(Mo) U -

his meaggx(\?ﬁ Uixy, ) = B(Ma) Uf whenever f = Xu 5 approxima-
E(En b}k;‘:ii‘nple tunctions proves the validity of the relation for all fin
b

SFH'EOREM 9. Every cycle is a 700

Proof. We arc to prove that i re and if Zxyz P ¢P, then
P = C(P)Z(z). Tt is convenient to use the result and the nnt'iatlon of
Theorem 1. 1f O — UPU, then @ is & projection with dornain S2(k)-
UM e S’ th(}n, {or overy f n gg(p),

Aty — TP Ui f) = UPEQOU = T BADFE

= V‘E(M)U-WIPUf = 0 Of-
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Consider in particular the funetion k identically equal to 1 and write
X = Qh Since XXy = XX — XM’Qh == Q(th) = Qx_w) le. since
¢ and multiplication by x have the same effect on every x,, , it follows
that x-f = @f for all fin %(u). The fact that Q is idempotent. implies
that our notation is justified, i.e. that x = x,, for some My in S,

If now y is any vector in the range of Z(z), 50 that y = Uf for some
fm @), then Py = PUf = UQf = Ulxy, -f) = F(My)Uf = K(Myy.
The arbitrariness of i implies that P = PZ(z) = E(M)) Z{z). Tt follows
that

C(Py = B(My) Clz) < E(M,). . \
Since S N,
P < C(P)Z() € (M) Z() = PpoN\"
the proof is complete. : 0

N

§61. The Existence of Rg}w-s

Our detour is almost over. The lash reéult that we obtained shows
that rows exist and even (in view of o9, 2 that they exist in abundance.
The main purpose of this section ig 1"0 prove, on the basis of a couple of
preliminary results, that there exmt rows of arbitrarily preseribed
lengths.

TaEOREM 1. If {Z;} 1‘3 o very orthogonal family of eycles and #f
R =Vv;Z;, thenstamw

Progf. Suppose tlﬁt Z(z) and Z(y) are orthogonal cycles such that
R 2z Z(z) and R-2/Z(y); in virtue of 50.3 it is sufficient to prove that
Z(z) and Z@Q Em?c very orthogonal. If we write

:"\.:' i= Cly) C(Z,):l‘,

then 5?3 implies that Z(z;) = Z(z) C(y) C(%;) for all 7; if, similarly,
~ ) ¥i = Cl&)ClZyy,
\thcn Z{ys} = Clz) Z{y) C(Z,) for all 5. Since

Zx;) = Z(x)

and
Z(y) = ZG)

for all j, it follows from the orthogonality we have assumed, that

Z(:E,') Ly} =0
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for all . Un the other hand we have
Clz;) = CECWCEZ) = Clyy)

for all 7. Since x; belongs to the range of C(Z;), it is orthogonal to the
range of Z; whenever k # 4 and, consequently, o; belongs to the range
of Z; ; similarly, of course, ¥; belongs to the range of Z; . Since Z;isa
row (ef. 60.2), it follows from 56.2 that Z(z;) = Z(y;) for all j. The
only way to reconcile our apparently contradietory results is to conclude
that all Z{z;) and Z{y;) and therefore all C(x) C(y) C(Z;) vanish. Since,
Oz Cly) = C)Cly) C(R) = V;C(x)Cy) C(Z;) = 0, we have proved
what we had to prove. O\

Tarorem 2. If [R;) is a very orthogonal family of rows az}ci:?f .
R = V;R;, \ O

then B is a row. N

Proef. Using 59.2, we may express each R; as anorthogonal sum of
eyeles. The fact that auch E;1is & row implies th,at\gny two distinct ones
of its summands are very orthogonal. Thefast that (R;} is a very
orthogonal family implies that if j # &, gherl any summand of &; is
very orthogonal to any summand of Kp» i, m other words, we unite
into one family all the cycles used tolobiain all R;, we obtain & repre-
sentation of B as a very orthogonal'sum of cycles, and Theorern 2 be-
comes an immediate corollaryiéf Theorem 1.

Tarcrem 3. If P e R Q‘xz:ﬁ? there exists a row B such thal R=Poud
CR) = C(P). N

Proof. Let (R ;}{bé"é maximal very orthogonal family of non-zero
rows such that By P for all . If it is not true that P < V,;C(&; then
{since P« Vg‘Q(R;)) there exists a NOn-zero vector # n the range of
P such that\8(R )z = 0 for all j. Bince Z(x) is a TOW, Z(z) < P, and
since, byts7.4 and 55.2, C(R)) C(x) = 0 for all j, the existence of =
coﬂt"«'ﬁﬁ:ﬁS the maximality of the family {R;}. We are therefore forc‘ed
to Bggept the inequality P = v,;C(R;). and, as a conseguence, the 1m-
equality C(P) = V,;C(R) = C(VsR3). Qince the reverse of the last-
Written inequality is obvious and since, by Theorem 2, V;R; is a ToW,
the proof is complete.

§62. Orthogonal Syatéms

If F ¢ F, an orthogonal systen of type F is an orthogonal family {R,:}
of non-zero rows such that C(Rj) = F for all j. The purpose of this
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section is to show how lo construet various orthogonal syvstems and
how to put together the ones we have congiructed fo obiain bigger ones.

TuroreM L. [f 12y a cardinal number, if {F ;] 15 an orthogonal fomely
of non-zero projections in ¥, and if, for cach j, {1 x} 15 an orthogonal
system of type F; and of power u, then [V, R ul s an orthogonal system of
type Vi F; and of power 1.

Proof. If, for cach index k, R, = V fj, then it follows from 61.2
that {#:} is an orthogonal family of non-zero rows. The proof, igscom-
pleted by the observation that C{f,) = V;C(Ha) = VI, lm dll k.

We observe that if {R;] is an orthogonal system of l.\pt‘ !f then
VR, £ F; the orthogonal system {R;} is called ('om;m'f i JV hj =F
Tt is obvious that a complete orthogonal system of txfe "% i+ o maximal
orthogonal system of type I7; we shall presently u,;’&hat. every maximal
orthoponal system of Lype I is put together Ixpwtomplete orthogonal
systems of suitable types. Y,

Turorem 2. If {R,} is an orthogongl. Bystc:rn of type I and if Fo 48
a mon-zero projection in F such that Fo &, then {Fo Rl is an orthugonal
system of type Fo ; of {R;} 1s compleigy then so s {Fo k2 ;)

IProaf. It is clear that {FuR; }~1s an orthogonal famlh of projections
in P and that C(F,R,) = FoEs= F, for all 7. Since, for all j, Fol2; = 0
(by 55.3) and FyR; is a rogn(by 56.1), it follows that {F,R;] is mdeed
an orthogonal system ofitype Fy T v;R; = F, then

\Vj’PTORJ‘ = FQ‘V,'R,' =Fy.
Turoreum 3. 4 f {R;} is an orthogonal system of type F and if Fo is

a non-zero py, ectwn in B such that Fy < V;R;, then {FoIi;] s a com-
plete orthogonal system of type F, .

Proofs\Nn view of Theorem 2 it is sufficient to prove completeness,
and th’!,s is a consequence of the relations Fo = Fo- V;R; = V;iFols.

THEOREM 4. If {R;} 4s a mazimal orthogonal system of (necessarily
Xwn 2er0) type F, then there exists a vector ¢ in the range of F such that
{C(x)R}} is a complete orthogonal system of type C(x).

Proof. WP =F — V;R;, then, since P < F, it follows that
oP) <

I C(P) = F, then, by 61.3, there exists a tow R such that R = P and
C(R) = F. Since this contradicts the maximality of {B;}, it follows that
Fo = F — C(P) #.0. Since the relation F, C(P) = 0 implies that

FoP = 0,
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and since this in turn implies (in view of the definition of P) that
Fy = VjRJ' H

it follows from Theorem 3 that {Fy R} is a complete orthogonal system
of type Fo. The proof of Theorem 4 may be completed by selecting an
arbitrary non-zero vector in the range of Fp and applying Theorem 2
to {FoR;}, Fo, and €(z) in place of {R;}, F, and F, respectively.

§63. The Power of a Maximal Orthogonal System ~

The theorem of the present section is the fundamental theorgm of
multiplicity theory. N\

7'\

Taporsey 1. If F e F, then any two maximal orthogongl\ systems of
type F have the same power. ) ‘ 3

Proof. 1f F = 0, there are 1o orthogenal systems ohtype F and the
power in question is zero. Suppose then that « and Yare non-zero cardinal
numbers and that {R;]} and {Si} are maximgh erthogonal systems of
type F and of power u and ¢ respectively&l?ly symmetry it will be
sufficient to prove that v = . v

By 62.4, therc exists & non-zero veckdr-2 in the range of F such that
(C(z)R;} is a complete orthogenal system of type C(z). Since we may
replace F, {R;}, and {S:} by C@IC@)R;), and {C(x)8:) Tespectively
(¢f. 62.2), we may (and do) aesume that {B;} and {8} are orthogonal
systems of type C(z) and of power and v respectively, and that

N ViSe = V3B

N

under these conditigns we shall prove that v = w.

Since R; <R, = Clz) for all 4, it follows from 58.2 and 583
that B; =A(7) for a suitable vector &;; similarly we may find, for
ench k, a{Vetior y: such that Sp = Z(n)-

Supyhée now that w is infinite. For each value of j, let X; be the set
Df"tl;iwsg indices k for which Ziyx; # 03 it is clear that each K; is
cattable, 11 J ¢ UK , ice. i Z{y)z; = 0 forall j, then Z(z) Z(x)) =0
for all j and therefore Z(yx) = Z(y)-V; 8 = 0- Since this is false,
it follows that every k belongs o U, K; and hence that ¢ £ R = %

In case u is finite, the proof is a bit more complicated. For each index
j we write p; for the measure on g defined for every M in S by

pAM) = (B(M)2;, ).

According to 60.1, there exists an isomorphism U; from 2,(u;) onto the
range of Z(z;) such that UFB(MYU;f; = xa'li whenever f; € £(u;} and
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M e S. Putting together the separaie isomorphisms U7; we obtsin an
isomnorphism U from the direet sum, say &, of all £,(u;) onto the range
of V;Z{z;) such that UE(MYU{f,} = {x.-f;} whenever {f;] ¢ § and
Me8

We define a measure ¢ on 8 by writing p(M) = (E(M)z, =) for every
M in 8 I (M) =0 for some M, then F(M)z = 0 and therefore
EM)C(x) = 0. Sinee C(z) = C(z,), it follows that E{M) C{x;) = 0 and
therefore, in particular, E(M)z; = 0 for every j. These considerations
imply that each of the measures p; is absolutely continuous with res})ect
to u and that, therefore, there exists a family {g;} of nownegative
funetions in 2(p) such that u;(M) = [ug;du for all 7 and\fof every
Min 8. GO

Since y: belongs to the range of ¥;Z(z;) for all k, wef cah find vectors
{#] in & such that . = Ulfal. If M ¢ S, then \‘

B, 9i) = BODU s}, Utfing)) = (@Sl Ulfi)
= (b Fd, Ui = zs'fxyf:klf?&z@ﬁu\'= Zi [ ffiengide
. 4 = T uZif i flin gidp

If (M) 5 0, then a repetition of ~tf1é“ argument of the preceding para-
graph shows that a necessary and wsufficient condition for the vanishing
of (E(M)yy,, yx,) is that k2%, . It follows that if k, and k, are re-
stricted to a countable suliset of the index set {k}, then there exists a
set M in 8 such that ‘(}I&f = 0 and such that if {e X — M, then a
necessary and sufﬁcieht condition for the vanishing of

SO B 150 050

is that k; > E/»Since for a fixed in X — M, and for each k, {f()} is a
vector in\a\u-dimensional Hilbert space in which, therefore, the power
of an pﬁjﬂh)gonal set of non-zero vectors is not greater than », it follows
thap{nﬂ'eed v = u, and the proof is complete.

g §
2

\ 3

§64. Multiplicities

The result of the preceding section enables us to associate a unique
cardinal number with every projection F in F. We define the multiplic-
ity of F, in symbols u(F}, to be the power (possibly zero) of a maximal
orthogonal system of type £. The function , from F to cardinal pum-

bers, behaves very much like the multiplicity functions we defined in
§49.
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Trronrem 1. If K and G are projeciions in F such that 0 = F = G,
then w{() = Wiy, if B =0, then w(F)y = Q.

Proof. 1f 1Ry} 1s ap orthogonal system of type G, then, by 62.2,
{FR;} is an orthogonal system of type F. This proves the first assertion;

the second asserlion js obvious.

Turorey 2. If {Fi} s an orthogonal family of non-zero projections
inF and of F = V;F;, then w(Fy = min {w(F)}.

Proof. We write u = min {u(F;)}. Since F; £ F for all 7, iF follows,
from Theorem 1 that u(F) = u(¥ ;) for all j and hence that u(F)Z .
Since, on ihe other hand, w(F;) = w for all j, it follows that, 'f\'o‘lwga\a.ch
j, there exists an orthogonal system {R ) of type F; and of \power .
Since, by G2.1, {V R Is an orthogenal system of type F, it follows that
w(F) =z \\

We continue imitating the theory of multiplicity Munctions. H a pro-
jection F in F is such that w(F) = u(Fd) whengx@r.‘Fu i$ a non-gero pro-
jection in F such that Iy = F, we shall say.fbit F has uniform multi-
plicity. P \4 -

TraeoneM 3. If {Fj] 15 an o-rthoggﬁcﬁ Jamily of projections in F such
that each F; has uniform madtipliedy u, and i F = v, F;, then F has
uniform maultiplicity v. Ny

Proof. 1f Ky is a non-z¢ B, drojection in F such that Fo = F, then
Fy = V;Fol'; . Bince t edast-written equation remains valid if the sup-
remum is extended ayetthose indices j for which FoF; # 0, it follows
from the uniformity, of the ;s and from Theorem 2, that u(Fo) = .

TuroreM 4. .\:.;1’\mcessary and sufficient condition that a non-zere pro-
jection F ineEhave uniform mulliplicity 18 that there exist o complete
orthogonal/system of type F.

P ?iQQf.j‘ "Phe sufficiency of the condition follows, using 62.2, from the
faet\that a complete orthogonal system 18 maximal. To prove its neces-
iﬁ‘, e let | F;} be a maximal orthogonal family of non-zero projections
in F such that F; < F for all j and such that for each 7 there exists 2
complete orthogonal system of type F;- That such families exist, and
that, in fact, the maximality of {Fi) implies V;F; = F, follows from
62.4. Since the power of a complete orthogonal system of type Fi8
exactly u(F) for all 7, it is legitimate to denote such a system by {Bal,
with the same index sct {k} for all j. If By = V,Rz, then, by 62.1,
{R:} is an orthogonal system of type F; the completeness of {Rs} fol-
lows from the relations VeRs = V;ViRu = ViFi = F,
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TrEOREM 5. If, for each cardinal number w not exceeding the dimen-
sion of ©, F, is the supremum of all those projections in F which have
uniform multiplicity u, then {Fy} s an orthogonal family, V. . = 1, and,
for each u, either F, = O or F\, has uniform multiplicity w.

Proof. For a fixed cardinal number w, let {&;] be a maximal orthog-
onal family of projections in F such that each ¢; has uniform multi-
plicity «. If G = F, — V;G; 5 0, then there exists a projection ' in F
such that F has uniform multiplicity % and such that FG' ¢ 0. Bince
F@ bas uniform multiplicity u, this contradicts the maximality ‘ef the
family {G;}. Consequently F. = V;{&,;, and therefore eitherF. =0
or, by Theorem 3, F, has uniform multiplicity ». It follgws that if
F,F, s« 0, then, since F..F, £ F, and F.FF, = I, th:ebmltiplicity of
F,F, is equal to « and to v at the same time, or, in pfher words, ¥ = ».
The faet that I — VvV, F. = 0 follows from (2.4 a‘nﬂ Theorem 4.

The results of this section essentially conclude’the wtructure iheory
of the pair of sets F and P, Theorem 5 showgis"That $ decomposes in a
natural and intrinsically defined mannap m?tn picces of unilorm multi-
plicity; Theorem 4 tells us that each such piece is made up of rows cut-
ting all the way across. From 59.2 wekuicow that every projection in P and
therefore, in particular, each of the! }'O{vS that make up one of the uniform
pieces, 18 an orthogonal sum.quo eycles; according to 60.1, the given
spectral measure behaves ofiveach such cycle as do the multiplications
by characteristic functiqns}:f measurable sels on a finite measure space.
In the remaining sections we tie this all up with multiplicity functions
80 a8 to obtain the §Sgmorphism of F with a canonical spectral measure.

; u;‘\“ §65. Measures from Vectors

Itz @Q’N’ector in §, we shall write p(x) for the measure u defined for
every W in 8 by u(M) = (E(M)z, z). In this section we shall study
the:: relation of the function p to some of the other concepts we have
‘mgroduced. The first and most obvious property of p js that o(z) = 0
if and onlyifz = 0; for the procf we need merely to recall that since
E(X) = 1, it follows that (E{(X)x,z) = j| z |[*. A slightly less obvious
property of p is a kind of additivity: if {%(z,)} is an orthogonal family of
¢ycles, and if the family {z;} of vectors is summable with sum z, then

plz) = V;p(x,).

To prove this we observe that, for each value of j, E(M)z; belongs to
the range of Z{x;) for every M in 8; it follows that {E(M)z;} is an
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orthogonal family of vectors and that || EGDz || = Z;{| B, ||| for
every M in S. Our next result lies somewhat deeper.

TrworeM 1. If  and y are veclors, a necessary and sufficient condi-
fion for the orthogonality of p(x) ond ply) is the orthogonality of C{x)
and C(1).

Proof. We write p = o(z) and » = p(y). If p L then there exists
o set M m S such that »(M Y= w(X — M) =0 (There are many ways
of seeing this: one way is to apply 47.2 first to » and » v g and then to
g and 2 v ) It follows that E(M)y = B(X — M)z = 0 and hereg"
that y = E(X — M)y and & = E(M)x. Since this implies that (),

Cly) = E(X — M) O
and \«
C(z) S EQD, LY
the orthogonality of C(x) and C(y) follows from) that of E(M) and
BX — M). N

Suppose now that we know that C(x) ang~0{y) are orthogonal. Since
ClZ(x) v Ziy)) = Cla) v C'(y) and since,(by 58.1 and 58.2, C{z) v C(y}
is separable, it follows from 58.3 that@ﬁére exists a vector 2 in the range
of Z{z) v Z(y) such that Clz} v i = CG). Write = p{z) and let
U7 be the isomorphism described’ jn 60.1 from 2u(u) onto the range of
Z(2). If ¢ = Uf and y = Ug{then, since Z(2)Z{y) = 0, it follows that

0 = (E(M)=z, v) =\(E(M)Uf, Ug) = (Ultud), Ug) = [ufo*du
for every M in S, This means that f(t) g*(1) = 0 for almost every t
(with respect toHe’ measure ) and hence that there exists a set M

in S such tha{o.ﬁ@)é 0 for almost every ¢ in M and g(1) = 0 for almost
every { in :&"—:\’M. For this set M we have

KO\ 2 2
(B, ) = || BODUSIE = || UacH) I = S| f P e = 0

a{i‘éir;iilarly (B(X ~— My, v) = fx-x19g Pdu = 0, whence p(z) L p(y)
as Wéserted.

TagoreM 2. If © and y are veelors, ¢ necessary and suficient condz-
tion that p(x) < p(y) is that C(x) = C{y).

Proof. Write @ = ¥ + 2 With %o in the range of C(y) and z or-
thogonal to the range of C(y). Since p(z) = o(yo) ¥ p(20), it Tollows that
if p(x) << p(y), then p(z} K py)- Since, on the other hand, C(y) C(z) = 0,
it follows from Theorem 1 that p(z) L p()- Consequently p(z) = 0,
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so thal 2z, = 0, and therefore x = y,. In other words 2 belongs to the
range of C(y), and therefore Clx) = Cly).
If, conversely, Clz) = C(y), we write u = p{x) and » = ply). If
(M) = 0 for some M in S, then E(M)y = 0 and consequently
E(MYyCly) = 0.
It follows that
EAMClx) =0
and hence that ~
WMy = (E(M)z, 2) = || E(M)z ||* = 0. A\
A
Our Jast result along these lines is of great technical sig{iﬁit‘.ﬁnce; we
call the reader’s attention to the fact that, had we prajed it in time,
we could have used it to simplify slightly the proof Al 6301,

TuroreM 3. If v 4s a findte measure on S a,nd""b};: % u vector in
such that v << p(x), then there exists a vector y wiNthe range of Z{x) such
that v = p(y); if v = pla), then 4(y) = ZlzYo

Froof. Tf u = plx}, then, by the Rad%’-.}:ikod_\_-’m theorem, there
exists a non-negative function ¢ in (&)such that v(M) = [ gdu for
every M in 8. Tf f is the non-negalive square root of g, then f e @(u).
It y = Uf, where U ig the isomqﬁf&lﬁsm deseribed in 60.1, then

YD) = [ |7 s = x5 || Uy ) i1
AN = [[EQOUS " = || EQOy I

If » = p{x), then, by*F}leorem 2, C(x) = C(y). Since Z{y) = Z(z) and
sinee Z(z) is a rowgitfollows that Z(y) = Clyy Z(x) = Clx) Z(z) = A(z).

AX

\ §66. Subspaces from Measures
THEQ@M L If uis any finite measure on S, then the set lzip(e) K p}
s sgb@pazce of &: 4f C(u) is the projection on this subspace, then C(u) ¢ F.
<Rmof. If p(z) < p and p(y) << p, then the relation

B ez + g || < |a ||| EQDa || + | 6}-|| BONy ||,

valid for all M in 8, shows that plax + By) vanishes whenever both
o{z) and p{y)} vanish and hence whenever 4 vanishes. If {z.} is & sequence
of veetors such that p(z,) < u for all # and such that x, — %, then the
relation || E(M)z. || — || E(Mz || shows that p{z) vanishes whenever
all p(x,) vanish and hence whenever & vanishes. It follows that

{zip(z) K p)
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is indeed a subspace and that, therefore, C{y) may be defined. If P ¢ P
and if p(&) < g, then, sinee P < E, it follows that

| BEQDPx || = [| PEQDx ] £ || Bz i

for all M, snd hence that p(z) vanishes whenever p{x} vanishes. This
implies that a(Px) < u whenever p(z) << g, or, in other words, that P
leaves invariant the range of C(p). Consequently P« C(y) and there-
fore, since £ iz arbitrary, Clu) e P =F.

Tugonry 2. If ¢ is @ findle measure on S, then ((u) 8 sepamble;.;if
= plx), then Clu) = (HER .

Proof. lot R be a row such that C(R) = C (), and let {Z(x,}) be
an orthogonal family of cyecles such that B = V 2z, Sipcé\thé fact
that R is a row implies that {C(z;)} is an orthogonal family, and since
o(z;) < x for all §, it follows from 65.1 that z; = 0 excelib for countably
many vaines of 7. Since Clu) = V;C(=5), 1t follows ~ft3m 58.1 and 58.2
that C(y) iz separable. H u = p(z) and if p(yI p, then, by 65.2,
Cly) < Cz), and vonsequently y belongs te)tlie range of C(x). Tn
other words C'(g) = C(x); the reverse ipequiality is obvious from the
definition of C{p). O

TuroreEM 3. If p and v are finde fﬁédsu'res on 8, then
Clu A = CRICH),

and therefore if » < g, theanfP) < Clu)

Proof. If plz) < p \r}, ‘then p(z) < u and therefore z belongs to
the range of ('(x). Thismplies that Ol av) S Cu). Since, similarly,
Clua») < C(), itptollows that Clu A ») £ C(w)C(»). If, on the other
hand, z belon ft-‘g\the range of C(u)C(»), then o(z) K p and p(z) K7,
so that p(z),&Lk A ». Since this means that x belongs to the range of
Clu A »), jikollows that C(u) C(r) = Clua »).

Tuzdrin 4. If ¢ is o finile measure on ¥ and © is @ vector i D such
ih%s'lfh):v = 0, then & L p(=).

roof. 1f p(x) = v, then, since » Ap K, it follows from 65.3 that
thers existe a vector ¥ in the range of Z{z) such that ply) = vaAu
Since ('(u)z = 0, it follows that C(s) Z(x) = 0 and hence that Clwy = 0.
Since, however, p(y) < u, we know that y belongs to the range of Clp).
Tt follows that = 0 and hence that & L 7.

THEOREM 5. If u is o fintfe measure oR S gnd if {p;} 15 o (necessarily
countable) orthogonal family of findle measures On 8 such that Vip; =
then C(u) = V;C(us).
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Proof. Sinee Theorem 3 implies that C(u} = Cluj) for all j, it ig
clear that C'(x) = V;C{p;). Suppose, on the other hand, that z is any
vector in the range of Clu) — V;C(u;). Since x belongs to the range of
Ci), we have p(x) < p; since, at the same time, C'(u)z = 0 for all j,
it follows from Theorem 4 that p(x) L x;for all j and hence that plz) |
These two properties of p(z) Imply that plz) = 0. We conclude that
@ = 0 and this completes the preof of the theorem.

§67. The Multiplicity Funetion of a Speectral Measurel \

If 4 is 2 finite, non-zero measure on S, the multiplicity of u, i symbols
u(u), is defined to be the minimum value of the multiplicitids %(0{x))
of the columns C{») determined by finite, non-zero m&gpﬁi'es # which
are absolutely continuous with respect to u; in other wbrcffs

ulp) = min {w(C{n)):0 = » <€')l:}.§

If 1 =0, we write u(x}) = 0. We proceed ,quiekly to show that the
Tunetion u from measures to cardinal numbeérs is indeed a multiplieity

funection. "N\

TazoreM 1. If p and v are finite m;eﬁ‘lsures on S such that O = v K p,
then u(v) = wlu). N

FProof. If 0 5 » < », then 1»'@ & u and therefore u(y) < w(C{v));

since this inequality is valid\for all admissible »,, it follows that
AN
A ulp) = ul(y).

TraEorREM 2. [fN[u;} s a countable orthogonal family of non-zero
measures, and i g5V u;, then u(u) = min {u(u,)}.

Proof. Tt 0\;6 vo <Ky, and if v; = w A u;for each J, then » = Vyu;.
The last-yritfen relation remains valid, of course, if the supremum is
extendegdgver only the set J of those values of j for which »; 5 0. It fol-
lows fram 66.5 that C(w) = V;,C(r;) and hence, from 64.2, that

PN

C WC(w)) = ming, {W(C»)} = min {ulu)}.

Since » is arbitrary, we see that u(p) = min {u(u;)}. If, on the other
hand, 0 5¢ » < u; for some value of j, then » < pu and therefore
w(C(r)} Z ulp), whenee w(u;) = u(u) for all 7. This implies that

min {ulu)} 2 ule).

The preceding two theorems tell us that the function « is a multi-
plicity function. We now have only one more technical detail to clear

'
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up before completing the theory, and that is the relation between the
coneepts of uniform multiphcity for measures and uniform multiplicity

for projections.

TysorEM 3. If & 45 o veclor such that C{x) has uniform multiplicity
and if w = pl(x), then u has uniform multiphicity. If, conversely, p 15
@ non-gzero measire of wntform mulliplicity and o is o vector such

that Clp) = Cla) (ef. 66.2 and 58.3), then there exists @ veclor Z such
that () p = olxd, (V) C(x) (= Clp)) has uniform multiplicity, and
(i) Z(zy = Zim). 2N

Proof. Suppose first that p = p(x) and that (%) has uniform mulit-
plicity. 1f 0 # 7o < , then by 65.3 there exists & vector o in .ti&’é‘r;}nge
of Z(x) such that »n = p(yo). Sinee po # 0, it follows that, Cre) # 0.
Since Clyy < Clp) by 66.3 and sinee Clg) = C(z) by 5612} it follows
trom the assumed uniformity that w(C(w)) = R(C@)),{ﬁﬁd that, there-
fore, u{w) = w(C{w))). HO = ro & v & p, then, applyiig the result just
proved, wo obiain the relation w(C(ro)) = u()whence it follows that
u(y) = w(g). This proves the first assertionp(the theorem.

To prove the second assertion, We supbose that p has uniform muiti-
plicity different from O and that 2o 15,8 Yector such that Cw) = Clzo)-
1t follows from this equation that.a{m) < u; We propose to show that
in fact plze) = p. For this purpdse “we let o be a measure {a relative
‘complement of p(x) In k) such ‘that po L p(%0) and po v plzo) = p I
g belongs to the range oﬁnéﬁm), then plxo) L plye) and it follows from
65.1 that Clag) Clye) Q:’S}J that o 18 orthogonal to the range of C (o)

The range of C{zs) igphowever, the same as the range of C(u), and, since

po < g, Yo belongg’t0 the range of C{y). It follows that 4 = 0, and
d uniformity implies

therefore thatufub) = 0. Since, however, the assume
that if o 207 then u(u) = (), it follows thab s = 0, and we do
indeed h*;\w u = p(ze). An application of 65.3 yields & vector « such
that \Z@) = Z(a) and p(z) = w and hence, by 66.2, such that

O Cw) = Clu) = Clov):

To prove that C(z) has uniform multiplicity, suppose that. F is a non-
2610 projection in F such that F = C'(x). Bince guch an F 18 necessarily
hthat F = C {y) and consequently,

separable, there exists a vector ¥ SU¢

by 66.2, F = C(»), where » = p(y). The fact that F # 0 implies that
v % 0. If 0 5 v « », then, by 2 repetition of 8 familiar argument, %
follows that €(z) # O and therefore w(Cl{m)} Z u(C(»}), Whence

u(v) 2 w(C0))-
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Since, however, u(v) = w(u) and u(C(»)) = uy), it follows that
w(C(9) = uln).

Applying this result to ¢ in place of » (ic. letting (2} itself play the
role of I}, we sce that w(C(v)) = w(C(x)); this completes the proof of
the theorem.

§68. Conclusion A
All the pieces are before us; all that remains is to put thern fogether,
In the preceding section we have succeeded in associating™wa multi-

plicity function with every spectral measure. To the multi pl*fci\t y funetion

& we may apply 49.3 to obtain an orthogonal family {1y of non-zero

finite measures on S such that each u; has unifom):"mult..ii_)licit-y and

such that 4 = V;(z A ;) whenever g is a finitéNmgasure: o S. From

66.3 we see that [C(x;)} is an orthogonal family of projections in F;

we assert that V,C(k,) = 1. If, indecd, J&rah arbitrary vector in 9

and if 4 = p(z), then p = V,(u A THE It;fbl]‘c’)ws from 66.5 that

Cle) = ViCle A g oE V,Clu)),

and hence that the vector z belq,rg'gs' to the range of V;C{x,). Since z is
arbitrary, we may conclude thatw ;C(u;) = 1.

According to 67.3, for each fixed 5, C(u;) has uniform multiplicity,
and therefore, by 64.4, there'exists an orthogonal family { R} of rows
such that Clu;) = V&4 and such that ClRu) = Clu;) for all k. The
cardinal number ofthe index family {k} is of course equal to w{uy).
Bince C(u;) is separible, it follows from 58.3 and 57.4 that each row
R, is in fact a,{y,cle. (The proof of this fact makes use of the elementary
lemma whichyasserts that if = is a vector and R is a row such that

O Z(z) < R

and 08"

mJ

Vo Cla) = C(R),

then Z(z) = R)) Applying 67.3, we may find a family {2} of vectors
{7 is still fixed) such that B # = Z{xs) and such that olzy) = u;. By
60.1, the range of Ry is isomorphic to (g #) by an isomorphism which
makes the given spectral measure F correspond to multiplications by
the characteristic functions of measurable sets, Putting these isomor-
phisms together, first over all k, for fixed 7, and then over all j, we
obtain a representation of 9 as a very large direct sum; each summand
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is the ¥, of a finite measure on §, and the representation makes cor-
respond to the given spectral measure E fhe canonical spectral meas-
ure associated with {u;} and {u Ot

These considerations prove that every spectral measure is unitarily
equivalent to & canonical one determined by its multiplicity funetion
and hence that if two spectral measures have the same multiplicity
function, they are unitarily eguivalent. Suppose, conversely, that E and
F are spectral measures with a common domain of definition and that
U is a unitary operator such that UT'EU = F. Write pa() for the

measure u defined by p(M) = || E(M)z |, and pr(z) for the medsuye »
defined by p(M) = || F(M)z |I>. If u is any measure, if pel(z) (&, and
¢ a3 = 0, then || EODU= || = [ UZEQNTs || = | E@Dz || = 0,

whenee gx{Uz) << 4. This means that if z belongs to the range of the
projection which it 18 natural to denote by Crli); th‘(%n Uz belengs o
the range of Cx{e). Since, by symmetry, the converse is also true, we
infer thal UCx(U = Celp). We may therafore conclude that the
multiphicity associated with Celp) via E isgthe same as the muliiplicity
associated with Cs(u) via F, and hence(thdt B and F have the same
multiplicity function. This settles a.]\lf'c'iur problems and fulfills all our

promises, AN
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The problem diseussed in §841 and 42 may (in virtue of 30.1) be stated as fol-
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an operater such that A < B, then does it or does it not fallow that 4% « RB?
Sinee A is normal, the question may also be viewed as a speeiul case of the prob-
lem of trapsitivity of commutativity: if A* <> 4 and 4 s B, ean gue Infer ihat
A* < B? The problem was explieitly ralsed more Lhan fen years age by von
Neumann; it appeared in print in [39). The first solution is due to Yuglede, [L1]
the solution presented in §§41 and 42 appears in [16].

The neat and powerful characterizailion of spectral subspaces (41.1) was proved
for Hermitian operators in [24].

The neat arrangement of the ideas in the proof of the spectral theoréd for
Hermitian operators, as given in §43, is duc to Eberlein, [10]. ,\:\

The crucial measure-theoretic extension theorem needed for the piwaf’of the
speetral theorem for normal operators in §44 may be found in [36g Vool 1, p. 146,
or second printing, Vol. I, p. 167]. N

The Radoen-Nikodym theorem is standard measure—thcow{ie equipment; ef.,
for instance, [15: p. 128]. A very neat proof based almost Qx'cﬁssivel ¥ on geometrie
facts about Hilbert space oceurs ino [38: p. 127]. g

The concept of a multiplicity function appears explicitly in (411, The first
successful attempt to construct a theory of multgi}licit,ies for non-separable
Hilbert spaces was made by Wecken, {49]. The t};éb}y for separable Iilbert spaces
is presented by Stone, [44: Chapter V11, who 4150 gives refevences 1o the classieal
literature and, in particular, to Helinger2& original solution of the problem of
unitary equivalence. N

The “prime”’ operation deseribed i 853 is ingpired by [34: pp. 388-389].

The representation theorem for<I3dblean algebras which is menttoncd in §54
can be found in [25]. Tt is worfi\noting that the conditions that the relovant
representatiion theorem requiesof the Boolean algebra F are mueh weaker than
the ones that come free witlivthe F in the text; all that iz necessary iz that F
be # e-algebra, Auot-hcr‘l:%sof of the representation theorem, closer in apirit to
Btone's topological appegach, is outlined in [15: Exercise 15¢, p. 171].

The term “sepatahld™ as used in §58 is due to Nakano, [33]. The work of Na-
kano, as represenﬁe;d by this paper and an earlier one, [32], is one of the main
sources on whisblthe exposition in Chapter I1T is based.
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ALMOST PERIODIC FUNCTIONS

By H. BOHR

Translated by H. CoHN. From the famous series
Ergebnisse der Mathemaitik und threr Grenzge-
biete, a beautiful exposition of the theory of Al
maost Periodie Functions written by the ereator of
that theory,

—1951. 120 pp. 6x9. Lithotyped. German edition was $;_‘;ssod

THEQRIE DER KONVEXEN KCGRPER
By Y. BONNESEN ond W. FENCHEL

“Remarkable monograph.”
—J. D, Tamarkin, Bulletin of the 4, M, 8.
—1524. 171 pp. 5%4x81%. Orig, publ. at $7.50 Cloth, $3.95

THECRY OF FUNCTIONS
By C. CARATHEQDORY
Translated by F. STEINHARDT. The recent, and py

already famous textbook, Funitionenthenric. ¢ ™\

Partial Contents: Part One. Chap, I. Algebrd bf
Complex Numbers IL. Geometry of Complex Num-
bers, II1. Euclidean, Spherieal, and Nom&aclid-
ean Geometry, Part Two. Theorems TronhPeirlt Set
Theory and Topology. Chap. I, Sequencesand Con-
tinuous Complex Functions. II. sChrves and
Begions. III. Line Integrals, Part Thife. Analytic
Functions. Chap. 1. Foundation&\[. The Maxi-
mum-medulus principle, 111, Pojsson Integral and
Harmonic Funetions, IV, Mereniorphiec Functions.
Part Four, Generation of Analytic Functions by
Limiting Processes, Chapsli Uniform Convergence,
J1. Normal Families of\Meromorphic Functions.
ITl. Power Series. [V ‘Partial Fraction Decompo-
sition and the Calgulus of Residues. Part Five.
Special Funetions. Chap. I. The Exponential Func-
tion and the Trigonometric Functions. I1. Logarith-
mic Function\III. Bernoulli Numbers and the
Gamma Funetion.

Vel :\Part Six. Foundations of Geometric
Functign Theory. Chap. I, Rounded Functions. L1,
Confdrmial Mapping. 111, The Mapping of the
Bo&ndary. Part Seven. The Triangle Funection and

Tteard’s Theorem. Chap, I. Functions of Several

z gamplex Variables, II, Conformal Mapping of

o SLircular-Are Triangles. IT1. The Schwarz Triangle

\./ Functions and the Modular Funetion, IV, Essential
Singularities and Picard’s Theorems.

“A book by a maaster . . . Carathéodory himself
regarded [it] as his finest achievement . . . written
from a catholic point of view.”—Bulletin of A.M.S.
—Val. 1. 1954, 310 pp. 6x9, £4.95
—Wol. I 1954, 220 pp. 6x9. $4.95

MEASURE AND'INTEGRAL
By C. CARATHEQDORY
—About 360 pp. Translated from the Germar, In prep.
YORLESUNGEN EBER REELLE FUNKTIONEN
By C. CARATHEQDORY

This grest classic is at once a hook for the begin-
ner, a refarence work for the advanced scholar and
a souree of inspiration for the research worker.

—2and, tatest complete, ed. 728 pp. 514814, Orig. publ. at
$11.80, i RR- 312x81 g $8.00

REELLE FUNKTIONEN

By C. CARATHEODORY
—193%, 190 pp. 514xE. ¥3.50
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ELECTRIC CIRCUIT THEORY and the
OPERATIONAL CALCULUS

By J. R. CARSON

uA rigorous and logical exposition and treatment
of the Heaviside operational caleulus and its ap-
plications to electrical problems . .. will he enjoyed
and studied by mathematicians, engineers and
seientists."—Electrical World.

Imd ed. 206 pp. 5laxE Cloth $3.93
Paper $1.88

THEORY OF LIE GROUPS

__jg45. x+ 217 pp. 5lax8la. (Winter, 19557, In prep.

TEXTBOOK OF ALGEBRA

By G. CHRYSTAL

The usefulness, both ag a textbook and as & work
of reference, of this charming classie is attested

to by the number of editions it has run through—. %

the present being the sixth. Its richness of content
can be only appreciated by an examination of the
twelve-hundred-page hook itself. Thousar'lgk ‘of

valuable exercises {with golutions). \
Gtk ed. 2 Wols. 1235 pages. 5348, Two wolset §8.00
Y
EIGENWERTPROBLEME UNQ'{HRE
NUMERISCHE BEHANDLUNG®

By L. COLLATZ AN

“Part T presents an interesting and valuable eal-
lection of PRACTIGAL APPLICATIONS.

upart I1 dealss with the MATHEMATICAL
THEORY. s

«Part IT1 takes up various methods of NUMER-
ICAL SOLWTION of boundary value problems.
These {nelude step-by-step approximations, graph-
{cal. inbegration, the Rayleigh-Ritz method and
mettods depending on finite differences, Here, as
throughout the book, the theory is kept m close

Mtouch with practice by numerons specific examples.”
7 __Mathematicul Reviews.

9,
&S 1945, 350 pp. VX8l Orig. pub. at $8.80. $4.95

A ALGEBREN
N By M. DEURING
\ ) o {Ergeb. der Moth.} 1935, v+143 PR. 515x8 1. Orig. pub.
ot 56.50. . $3.95

HISTORY OF THE THEORY OF NUMBERS |

By L. E DICKSON
ways has in

«j monumental work . . . Dickson al

mind the needs of the investigator ... The a}lthor
has [often] expressed in a nut-shell the main re-
sulis of a long and involved paper i £ maich
clearer way thon the writer of the article did him-~
self. The ability to reduce complicated mathemati-
cal arguments to simple and elementary {erms 18
highly developed in Dickson."—Bulletin of A. M. 8.
__al, | [Divisibllity and Primafity wit-t485 pp. Vol 1l

¥
{ Diophantine Analysis) woev+ 803 pp. Vol 111 (Quadratic and
Higher Forms! v+313 pp Threa vol. set §19.50
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REELLE FUNKTIONEN. Punktfunktionen

By M. HAHN
—426 pp. 514xE15. Orlg. pub. ot §12.E0. 55.50

INTRODUCTION TO HILBERT SPACE AND
THE THEORY OF SPECTRAL MULTIPLICITY
By P. R. HALMOS

Prof. Halmos' latest bock gives a clear, readable
introductory treatment of Hilbert Space. The
multiplicity theory of continuous spectra ig
freated, for the first time in English, in full
generality.

—135%. 2nd. ed. {c. repr. of 15t ed.). 120 pp. 6x9, $3.25

GRUNDZUGE DER MENGENLEHRE
By F. HAUSDORFF

Some of the topics in the Grundziige omitted from 4

later editigns:

Symmetrie Sets—Principle of Duality—most of

the “Algebra®” of Sets——most of the “Ordered
Sets"—Partially Ordered Sets——Arbitrar,}(\%é‘ts
of Complexeze—Normal Types—Initia] Y and
Final Ordering—Complexes of Real Numbérs—
General Topological Spaces— Euelidehn Spaces
—the Speeial Methods Applicable inthe Euclid-
ean plane—Jordan's separation{Thaorem—The

Theory of Content and Meagitres—The Theory
of the Lebesgue Integral, AN/
—First edition, 484 pp. S1AxE14. M $4.95
o\

n X

SET THEQRY N
By F. HAUSDORFF o\

A translation of.the third German edition of the
classic, &

—Third editior{.’“l\}nur 320 pp. In prep.
#

o
VORLESUNGEN UBER DIE THEORIE DER
ALGEBRAISCHEN ZAHLEN

BP\EHECKE

"’:\;‘ﬁn elegant and comprehensive account of the
"™\ “modern theory of algebraic numbers,”

—Bulletin of the A. M, 8.
“A classic.” —Mathematical Gazette,
—1923. 264 pp. 514x814. $3.95

INTEGRALGLEICHUNGEN UND
GLEICHUNGEN MIT UNENDLICHVIELEN
UNBEKANNTEN

By E. HELLINGER and ©. TOEPLITZ

“Indispensable to anybody who desires to pene-
trate deeply inta this subject.”—Bulletin of A.M.S.

—With o prefoce by E. Hilb, 1928, 246 PR- 5V4XB. $4.50

Grundzuge Einer Allgemeinen Theorie der
LINEAREN INTEGRALGLEICHUNGEN

By D. HILBERT

=306 pp. 5Voxd1y, 54.50
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W “These are but a few of the toples . .
$ evokes the imagination and the text must surely

N capture it.”—Math. Gazette.

PRINCIPLES OF MATHEMATICAL LOGIC
By D. HILBERT and W. ACKERMANN

The famous Grundziige der Theoretischen Logik
transiated into English, with added notes and re-

vigions by ProrF. R. E. LUCE.

“The hest textbock in z Western European
language for a student wishing a fairly thorough

treatment,"—Bullatin of the 4. M. S,

— 1950, xii+172 pp. 6x9. $3.75

GEOMETRY AND THE IMAGINATION
By D. HILBERT and 5. COHN-VOSSEN

The theme of thiz book ig ingight. Not merely
proofs, but proofs that offer insight—intuitive

anderstanding—into why they ore true.

merely properties of the nyperboloid or of Pascal's
hexagon, but ingight into why they hove these
properties. In this wide-ranging survey, one of the
world’s greatest and most original mathematicians
uses insight as both his technique and his aim,
Both the heginper and the mature mathematician

will learn much from this fascinating treatige,

Translated from the German by P. NEMENYI.
CrapTer HEADINGS: I The Simplest Cuzves and
curfaces. 1L Regular Systems of Pointa\J11. Pro-
jective Configurations. TV. Differentidl, Geometry.

¥. Kinematics, V1. Topology. A\
“ A mathematical classic . . o’Tb}

matical zeo.'—Scientific Agterican,

«Qindents . . . Will ‘experience the sensation of
being taken into the' friendly confidence of a great
mathematician znd;being shown the real signifi-

cance of thingsfis-Seience Progvess.

“A glance down the index (fwenty-five colwmns

of it) reveal the breadth of range:—

« A nalus; Atomic structure; Auntomorphic func-
tionsy Rubble, soap; Caustic Curve; Colar problem;
Degsity of packing, of circles; Four-dimensional
space} Gears, hyperholoidal; Graphite; Lattices;

. Mapping; “Monkey gaddle”; Table salt} Zine.

__1952. 358 pp. 6x9.

SQUARING THE CIRCLE, and other
Monographs
By HOBSON ef al,

SQUARING THE CIrcLE, by Hobson. A fascinating

and scholarly history of the number .

RULER AND COMPASSES, by Hudson. “An ana-

1ytical and geometrieal investigation of how far
ug. It is as thor-

Euclidean constructions ean take ]
oughgoing as it i construetive’—3¢i. Monthly.

Tug THEORY AND CONSTRUCTION OF MNoN-
TI0NS, by Singh. 1. Fune-
1. Functions peﬂnec} Geo-
metrieally. IIL Functions Defined Arithmetically.

Functions.
How T0 DRAW A grrareeT LINE, by Kempe, An
aph om linkages. Describes,
a linkage that will trisect any

DIFFERENTIABLE FUNC
fions Defined by Series.

IV, Properties of Non-Differentiable
intriguing MONOET:
among other things,
angle. ) )

meaty.”—-Scie‘nhﬁc American.

#Intriguing,
— 358 pp. 414xT Ve

! fmrpnse iz to
make the reader see and feel :oht}praofa.”-—s-:isnce.
« & fascinating tour of #Ahe20th-century mathe-

. The title

£5.00

Four vols, in one §3.25

2 AN\
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ENTWICKLUNG DER MATHEMATIK IM 19,
JAHRHUNDERT
By F. KLEIN

Vol. I deals with general Advanced Mathematics
of the prolific 19th century, Vel. If deals with the
mathematies of Relativity Theory.,

—616 pp. 514x814. Orig. $14.40 2¥als inone  §T1.5¢

VORLESUNGEN UBER HOHERE GECMETRIE
By FELIX KLEIN
—Third ed. 413 pp, 5l5x8, Crlg. publ. at $10.80, 24,95

FAMOUS PROBLEMS, and other monographs
By KLEIN et ol

Fimors PrROBLEMS oF ELEMENTARY GEOMETRY,

by Klein, A fascinating little book. A simple, easilyy 3

understandable, account of the famous problems of,
Geometry—The Duplieation of the Cube, Triseds
tion of the Angle, Squaring of the Circle—sand\the
proofs that these cannot be salved by miler and
compass——presentable, say, before an undergradu-
ate math club {no calenlus required \NAlso, the
. modern problems about transcendentad numbers,
the existence of such numbers, and\proofs of the
transeendence of e, X )

FroM DETERMINANT To TENSSE by Sheppard.
A novel and charming introduction, Written with
the utmost simplicity. Pr €.30rigin of Determi-
nants. IT, Properties of Determinants. 111, Sclution
of Sitnultaneous Eqation® IV. Properties. V. Ten-
80T Notation. Pt 1T, NI Bets. VIT, Cogredience,
ete. VIII. Examplessfrom Statistics, IX, Tensors
in Theory of Relativity,

INTRODUCTIO.}&;TG COMBIN ATORY ANaLYRIS, by
MasMahon, ANsoneise introduetion to this fieid.
Written as ,'Q%rdduction to the author’s two-volume
work.

THEBE LECTURES ON FERMATS Lagr THECREM,
by M oxdell. These lectures on what iz perhaps the
mpat gelebrated conjecture in Mathematics are
tmtentded for those without training in Number
ATheory. I, History, Bariv Proofs, 1L Kummer's

“\'; reatment and Recent Results. ITI. Libris and
. Germain’s Methods.

Four vofs, in ore,  $3.25

THEORIE DER ENDLICHEN UND
UNENDLICHEN GRAPHEN

By D. KONIG

“Elegant applications to Matrix Theory . . .
Abstract Set Theory . . . Linear Forms . . . Elec.
trieity . , . Basiz Problems . . . Logic, Theory of
Games, Group Theory,” -, Kabmar, Aeta Szeged.

~—1936. 269 pp. 514x3 V. Qrig. publ, at $7.20 $4.50

PIOPHANTISCHE APPROXIMATIONEN
By J. F. KOKSMA

ToiErgeb. der Math.) 1936, 165 pp. 514815, Crig. publ, at
7725 op. SlaxByy =] %550

oA\
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FOUNDATIONS OF THE THEORY OF
PROBABILITY
By A. KOLMOGORQV

Transletion edited by N. MORRISON. With a biblio-
graphy and notes by A. T. BHARUCHA-REID.

‘Almost indispensable for anyone who wishes a
thoyaugh understanding of modern statistics, this
basic tract develops probability theory on a postu-
lational basis.

__2nd. ed. 1956, viii + 84 pp. Ex3. 52.50

EINFUHRUNG IN DIE THEORIE DER
KONTINUIERLICHEN GRUPPEN
8y G. KOWALEWSKI

406 pp. 5Vaxdly. Orig. publ. at $10.20. 54.95
DETERMINANTENTHEORIE
EINSCHLIESSLICH DER FREDHOLMSCHEN :"}'«
DETERMINANTEN ON ?

By G. KOWALEWSK! S

“p classic in its field."—Bulletin of thes . 5.

—Third adition. 1942, 328 pp. 5 oxE, .,\\: $4.95
IDEALTHEORIE O

By W. KRULL WV

__(Ergeb. der Math.) 1935, 15% pp. SVaxBY. Oria. publ.
{paper bound} at $7.00. 48 7 Cloth, $3.95

’.” *

GROUP THEORY ™"
By A. KUROQ‘I
Translated_from the second Russian edition and
with a ‘hotes by ProF. K. A. HIRSCH.
ANconiplete rewriting of the first, and already
famous, Russian edition.
P Paitinl Contents: PART ONE: The Elements of
AGroup Theory. Chap. I. Definition. 1], Subgroups

'\~(Systems, Cyclic Groups, Azcending Sequences 0.

Groups}). 1IL Normal Subgroups. 1v. Endomor-
phisms and Antomerphisms. Groups with Opexa-
tors. V. Series of Subgroups. Direct Products.
Defining Relations, ote. PART TWO: Abelian Groups.
VL. Foundations of +he Theory of_Abelian Groups
{Finite Abelian Groups, Rings of Endomorphisms,
Abelian Groups with Operators). VII, Primary
and Mixed Abelian Groups. VIIL Torsion-Free
Abelian Groups. Fditor's Notes. Bibliography.
Vol. If. Part THREE: Group-Theoretical Con-
structions. 1X. Free Products and ¥ree Groups
{Eree Products with Amalgamated Subgroup,
Fully Invariant Subgroups). X. Finitely Genera-
ted Groups. X1, Direct Products. Lattices (Modu-
lar, Complete Modular, ete.). ¥I1. Extengions of
CGroups (of Abelian CGroups, of Non-commutative
Groups, Cchomology Groups). PART FouR: Solv-
ahble and Nilpotent Groups. ¥II1. Finiteness Con-
ditions, Sylow Subgroups ete. XIV. Solvable
Groups {Solvable and Ceneralized Solvable Groups,
.ocal Theorems). X V. Nilpotent Groups (Genera-
lized, Complete, Tocally Nilpotent Torsion-Free,
ete.), Editor's Notes. Bibliography.
$4.95

_Mol. 1. 1955, 271 P 6=,
—wol. 11, 1956, 308 pp. 6. 495
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DIFFERENTIAL AND INTEGRAL CALCULUS

By E. LANDAU

Landau's aparkling Finfithrurg in English trans-
lation. Completely rigorous, completely self-
eontained, borrowing not even the fundamental
theorem of algebra (of which it gives a rigorous
elementary proof), it develops the entire calculus
including Fourier series, starting only with the
properties of the number system. A masterpiece of
rigor and elarity,

—1950. 372 pp. 6x9. $5.00

HANDBUCH DER LEHRE VON DER
VERTEILUNG DER PRIMZAHLEN

By E. LANDAU

To Landau’s monumental work on prime-number

theory there has been added, in this edition, two of

Landau's papers and an up-to-date guide to thet

work: an Appendix by Prof. Paul T. Bateman, £ ™

—2nd ed, 1952. 1,023 pp. 5VaxBl4. Twa vol. set FIMS0
&

ELEMENTARE ZAHLENTHEORIE
By £. LANDAU \

“Interest 1a enlisted at once and gm’ﬁ}ﬁ]ed by the
aceuracy, skill, and enthnsiasm with'which Landau

marshals . . . facts and simplifies . . . details.”
—G. D, Birkhoff, Bulletin of the A. M. 5.
~—1927. vil+180+iv pp. 5laxBly, $3.50
)

FOUNDATIONS OF ANALYSIS
By E. LANDAU &\

“Certainly no cleare¥ treatment of the foundations
of the numberigystem can be offered. . . . One ean
only be thankfulto the author for this fundamental
piece of expabition which is alive with his vitality
and geh’qgi.”—-.f. F. Ritt, Amer, Math. Monthly.
—195@, 6x3, $3.50

VORLESUNGEN (JBER ZAHLENTHEORIE
/By E. LANDAU

'\ The various sections of this important work

. (Additive, Analytic, (jeometric, and Algebrafe

Number Theory) ean be read independently of one
another,

—Wol, I, Pt. 2. +{ Additive Murnber Theory) xii + 180 pp. Vol

1. lAnalytical Numnber Theory and Geometrical Number Theary ]

wiii + 308 pp. vol, {11. [ Algebrare Number Theory and Fermat's

Last Theorem) viti + 341 pp, 544x81ly. w1Vl |, PY. 1 it issued

as Eiemantary Numbar Theory.! Qrigirally publ, at §26.4¢

Three vols. in cne §12.00

ELEMENTARY NUMBER THEORY

By E. LANDAU
—About 200 pp. Fn prep.

GRUNDLAGEN DER ANALYSIS
By E. LANDAU

The student who wishes to learn mathematical
German will find this bogk ideally suited to his
needs. Less {han jfifty German words will enable
him to read the entire book with only an occasional
glance at the vocabulary! [A complete German-
English vocabulary has heen added.]
~—LGrig. publ, at $4.00. $2.95
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DARSTELLUNG UND BEGRUNDUNG
EINIGER NEUERER ERGEBNISSE DER
FUNKTIONENTHEORIE

By E. LANDAU
—2nd ed. 1929 122 pp. 54«8, Orig. publ. at $4.00, $3.25

EINFUHRUNG IN DIE ELEMENTARE UND
ANALYTISCHE THEORIE DER
ALGEBRAISCHEN ZAHLEN UND DER IDEALE
By E. LANDAU
—ng ed. vii+147 pp. 5YaxE. $2.95

MEMOIRES SUR LA THEORIE DES SYSTEMES
DES, EQUATIONS DIFFERENTIELLES
LINEAIRES, Vols. |, IE, Hl

By J. A. LAPPO-DANILEVSKY

Some of the chapter titles are: General theory of)
functions of matrices; Analytic theory of matrites;
Problem of Poineard; Systems of equations) in
neighborhood of 2 pole; Analytie eontinuation$ In-
tegral equations and their application the'theory
of linear differential equations; Ripm n's prob-

A

lem; ete, \}
el E owiv - 253 pp. Vol 1 vill 4 208pey Vol (1L iv - 204
pp. 34ax81l4. Thirge: yols. in one. S10.00
»:’
TOPOLOGY AN

By S. LEFSCHETZ o0"
and. ed. (Cocr. repr fs st ed) x4+ 410 pp. SVaxBY.
S 455

ELEMENTS Q,FQALGEBRA
By HOWARDJLEVI
«ihis book s addressed to beginning students of
mathématies. . . . The level of the book, however, 18
so gphsually high, mathematically as well as peda-
Po¥ically, that it merits the attention of profes-
‘signal mathematicians (as well as of prqfessu_mal
't\pedagogues) interested in the wider dissemina-

#\“tion of their subject among cultured people . .. a

' clgser approximation fo the right way to teach
mathematics to beginners than anything else now
in existence.'—Bulletin of the 4. M. S

—2nd, ed. 1956 i+ 160 pp. SlixB by, %$3.25

LE CALCUL DES RESIDUS

By £. LINDELOF
Tmportant applications in a striking diversity of
mathematical fields: statisties, number theory, the
theory of Fourjer series, the caleulus of finite
differences, mathematical physics and advanced
caleulus, as well as funetion theory itself.

— 151 pp. SlaxBl;. $3.25
THE THEORY OF MATRICES
By C. C. MacDUFFEE
e without

“No mathematical library can affoxd to b
this book."—Bulletin of the A. M. S.
eb. der Math.} 2nd edition. 116 pp. Ex%. Orig.sﬂzugg

—IE
at SuSr%.O
MACMAHRON, “introduction . .  see Klein



CHELBEA SCIENTIFIC BOOKS

IRRATIONALZAHLEN
By O. PERRON

Methods of introducing irrational numbers
(Cauchy, Bolzano, Weierstrass, Dedekind, Cantor,
Méray, Bachman, ete.) Systematic fractions, con-
tinued fractions, Canter's series and algorithm,
Litroth's and Engel's series, Cantor’s products.
Approximations, Kronecker theorem, Algehraic
and transcendental numbers (éncluding tronscen-
deney proofs for e and x; Liowville numbers, ete.)

—2nd. ed. 1939, 207 pp. SLgxBlg, Cloth  $3.25
Paper $1.50

SUBHARMONIC FUNCTIONS
By T. RADO
-—(Ergeb. der Math.} 1937, iv+56 pp. 514axElLa. $2.00

AN

THE PROBLEM OF PLATEAU

By T. RADO R4

—(Ergeb, der Math.] 1933 113 pp. 5l4xB. Orig \pdbl. {in

paper binding) at £5.10 Cloth, $2.95

v :'\\':

EINFUHRUNG IN DIE KOMBINATORISCHE
TOPOLOGIE P \%

By K. REIDEMEISTER o

=220 pp. SYaBl. O $3.50

) e
N

KNOTENTHEORIEL®
By K. REIDEMEISTER
—= 1 Ergeb. de{ﬂ}#h.l 1932, 78 pp. SV4xB15. 52,25

™
FOUR[ER\SER!ES
By M. ROGOSINSKI

:'\TTa.nsIated by H. Coun. Designed for bepinners
&/ With no more background than a year of caleulus,
N, this fext covers, nevertheless, an amazing amount
of ground. It is svitable for self-study courses as
well ag elassroom use.

“The field covered is extensive and the treatment

N,

ia thoroughly modern in outlook . . . An admirable
guide to the theory.”— Mathematical Gazette.
~—1950. 182 pp. 4V %EV5. (English translation) . $2.25

CONIC SECTIONS
By G. SALMON

“The classic book on the subject, covering the whole
ground and full of touches of genius.” .
—Mathematical Association,

—5th. ed. xv + 400 pp. 5Vax814. Cloth  $3.25
Faper 51,94

ANALYTIC GEOMETRY OF
THREE DIMENSIONS

By G. SALMON
I prep.



CHELBREA SCIENTIFIC BOOKS

INTRODUCTION TO MODERN ALGEBRA
AND MATRIX THEORY

By O. SCHREIER and E. SPERNER

An English translation of the revolutionary work
Einfithrung in die Analytische Geometrie un
Algebra. Chapter Headings; 1. Affine Space. Linear
Equations. (Vector Spaces). 1L Euclidean Space.
Theory of Determinants. 111. The Theory of Fields.
Fundamental Theorem of Algebra. 1V, Elements
of Group Theory. V. Matrices and Linear Trans-
formations. The treatment of matrices is especially
extensive,

#Qutstanding . . . good introduction .. . well
suited for use as a text, .. Self-contained and each
topic is painstakingly developed.”

_-Mathematics Teacher.

—_viii + 378 pp. 6x%. $6.00

PROJECTIVE GEOMETRY
By O. SCHREIER and E, SPERNER

Analytic Projective Geometry of n dimensions.)
_-{Being volume two aof Introduction to Modern Al yibra.)
1n,prep.
x'\\:
LEMRBUCH DER TOPOLOGIE &
By H. SEIFERT and W. THRELRALL}
This famous book is the only thodern work on ¢om-
binaterial topology addressed to the student &3 well
aa to the specialist. It ighaimost 1njilspensable to
the mathematician w}m:w.ishes to gain a knowledge
of this important ﬁelt}. ’
«Fhe exposition “proceeds by easy siages with

examples and jllugtrations at every turn,
e \ —_Pulletin of the A. M. 8.

1934, 360 p) Sy2x8la. Orlg. publ. ot $2.00. $4.95
A

VARIATIONSRECHNUNG  iM GROSSEN
(The6rie von Marston Morse)
,\f:\sy H. SEIFERT and W. THRELFALL

\~ The brilliant expository talents of Professors Bei-
fert and Threlfall—familiar to the many readers
of their Lehkrbuch der Topologie—are here devoted
fo an eminently readable account of the caleulue
of variations in the large.
—1938. 120 pp. 65

SHEPPARD, “From Determinant 1o Tensor,” see Klein

$2.95

HYPOTHESE DU CONTINU
By W. SIERPINSKI
157 pp. SlyxBlE. {Winter ‘56 or Spring 27}
SINGH, +iNon-Differentiable Functions,” see Hobsan

1n prep.

DIOPHANTISCHE GLEICHUNGEN

By T. SKOLEM

—-iErgeb. der Math.) 1

938, het130 pP- S8, ?SM;EI
Orig. publ. at $56.50. -



CHELBEA SCIENTIFIC BOOKSR

ALGEBRAISCHE THEORIE DER KOERPER
By E. STEINITZ

"Epoch-making.”—A. Haar, Aete Szeged.
—177 pp. including two appendices. SVaxB T4, %3.2¢

INTERPOLATION
By J. F. STEFFENSEN

“A landmark in the history of the subject.
“Starting from scratch, the author deals with
formulae of interpolation, construetion of tables,
inverse interpolation, summation of formulae,
the symbolic ealculus, interpolation with several
variables, in a clear, elegant and rigorous manner
... The student . . . will be rewarded by a compre-
hensive view of the whole field. . . . A classic ae-
count which ne serious student can afford to
neglect.”—Mathematical Gazette,

—1950. 2nd ed. 256 pp. 5'4xBVy. Orig. publ, ot $8.00, $3.95 &

A HISTORY OF THE MATHEMATICAL <
THEORY OF PROBABILITY R4

By |, TODHUNTER

Introduces the reader to almost every prdeéss and
every apecies of problem which the'fé’(rature of
the subject can furnish, Hundreds of {problems are
solved in detail, N\

—&40 pages. 5T4xB. Previously Publgi\g8 00, 54.95

LECTURES ON THE GENERI&L THEORY OF
INTEGRAL FUNCTIONS, ™
By G. VALIRON &

~—1923. xit+208 pp. 5YekE. $150
GRUPPEN VON LINEAREN
TRANSFOKMATIONEN

By B\ VAN DER WAERDEN

—-;{E\’r’gel;. der Math,) 1935. 94 pp. 515xBl;. $2.50

ALGEBRAIC SURFACES

\if‘by O. ZARISK]

—{Ergeb. der Math.] 1535 204 pp. SikaxBl4. Orig. publ. at
9.20, pp. 2YaxE sz $4.50

THE THEORY OF GROUPS
By H. ZASSENHAUS

Prof. Zassenhaus has revised and added consider-
able new material in this second English edition of
his famous textbook. Lattice theory, subinvariant
subgroups, semi-groups, and other topies that have
come into prominence are treated and numerous
exercises on the new material provided.

—2Znd ed. Approx, viit 4+ 265 pp. 6x9, TWinter, '56.}
Prob. price $5.95

TRIGONOMETRIC SERIES
By A. ZYGMUND

“The book on Foprier Series.”
—Bulletin of the A, M. 8.
—2nd. ed. 324 pp. 6x9. Cloth  $4.95
Faper 1.50
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